Bias, Fairness, and Ethics

Terminology

- Bias (vernacular): prejudice in favor of or against one thing, person, or group compared with another, usually in a way considered to be unfair. (OED)
- Bias (statistics): the difference between the expected value of an estimator and the true population mean.

Algorithmic Bias

- "I'm training a network to classify images"
- "I'm training a network to generate text"
- We are always training the network to replicate data
- Biases in the data are encoded in the network

Algorithmic Bias Examples

- Recidivism Prediction ${ }^{1}$

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

- Recruiting ${ }^{2}$

> Amazon scraps secret AI recruiting tool that showed bias against women

Training Data

Male

Female

${ }^{1}$ Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. "Machine Bias: There's software used across the country to predict future criminals. And it’s biased against blacks." May 23, 2016. ProPublica.
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
${ }^{2}$ Jeffrey Dastin. "Amazon Scraps Secret AI Recruiting Tool that Showed Bias Against Women." Oct. 10, 2018. Reuters.
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/am azon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idU SKCN1MK08G

Fairness

Sensitive Variable: $A \in\{a, b\}$
True output: $Y \in\{0,1\}$
Predicted output: $R \in\{0,1\}$

Binary Classification

E.g., protected classes in hiring: race, religion, gender, disability, veteran status, etc.
 Machine Learning" by Ziyuan Zhong. Published Oct 21, 2018, accessed April 15, 2022. https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb

Unawareness

- Both of the previous examples were "unaware" - Correlated features
- E.g., zip code, name

Demographic Parity

$$
P(R=1 \mid A=a)=P(R=1 \mid A=b)
$$

- Legally motivated (four-fifths rule)
* Lazy solution: predict correctly on one group and randomly on the other

Predictive Parity

$$
P(Y=1 \mid R=1, A=a)=P(Y=1 \mid R=1, A=b)
$$

- Encourages good predictions
* Can be reflective of true societal bias

Impossibility Theorem

Demographic parity does not hold

$$
\text { If } \neg(A \perp Y) \text { and } A \perp Y \mid R \text {, then } \neg(A \perp R)
$$

If the true outcome depends on the sensitive variable then either

- The prediction depends on the sensitive variable, or
- The true outcome conditioned on the prediction depends on the sensitive variable

Predictive
parity does
not hold
For a deeper dive on fairness, see "Fairness and Machine Learning" by Solon Barocas, Moritz Hardt, and Arvind Narayanan. Available at https://fairmlbook.org/index.html.

Ethics

Who is developing models and why?

Deliberate Misuse

Synthesizing Obama: Learning Lip Sync from Audio SIGGRAPH 2017

Supasorn Suwajanakorn, Steven M. Seitz, Ira Kemelmacher-Shlizerman

Output Obama Video

Incentives and Limitations

- Many learning algorithms are designed to make money

Auditing Radicalization Pathways on YouTube

Manoel Horta Ribeiro*
EPFL
manoel.hortaribeiro@epfl.ch

Raphael Ottoni
UFMG
rapha@dcc.ufmg.br

Robert West EPFL robert.west@epfl.ch
(FAccT 2020)

Virgílio A. F. Almeida UFMG, Berkman Klein Center virgilio@dcc.ufmg.br

Wagner Meira Jr. UFMG
meira@dcc.ufmg.br

- Who can train models?

Model		$\begin{gathered} \text { Toatl rain } \\ \text { Tompe } \\ \text { (foppes) } \end{gathered}$	$\begin{aligned} & \text { Params } \\ & (\mathrm{M}) \end{aligned}$	Training tokens (billions)	$\begin{gathered} \text { plops } \\ \text { per param } \\ \text { per token } \end{gathered}$	Mult for bwd pass		
re c..."	\bigcirc nor.on	1 onfon	${ }^{\sim}$, mon	。			n=
GpT.-3 13 B GPT- 177 B	$\underset{\substack{2.68 E+02 \\ 3.64+53}}{\substack{2 \\ \hline}}$	$2.31 \mathrm{E}+22$ $3.14 \mathrm{E}+23$	$\begin{gathered} 12,850 \\ 174,600 \end{gathered}$	300 300	${ }_{6}^{6}$	3 3	${ }_{2}^{2}$	1.0

>30 years on an RTX 3090 Ti
~7 months
on TACC's Stampede2

What Can You Do?

- As a user: normal media literacy
- Understand your data
- Analyze your models
- Actively work on bias/fairness

