
1 Setting

In gradient descent, we update the parameters θ of our model according to the
rule θ ← θ − εEx,y∼D [∇θ`(θ;x, y)]. For standard gradient descent, we perform
this update only once after each full pass through the dataset, so the expectation
is computed exactly. However this is very slow if the dataset is large. An
alternative approach is to use stochastic gradient descent (SGD), where at each
iteration we pick one datapoint (xi, yi) and use ∇θ`(θ;xi, yi) as an estimator for
the expected gradient over the entire dataset. That is, we use the update rule
θ ← θ−ε∇θ`(θ;xi, yi). However, the gradient at different datapoints can be very
different. Variance is a way for us to measure this difference and understand
what impacts it might have on training.

2 Variance

Intuitively, variance is a measure of how “spread out” a dataset is. For single-
variable distribution D, it is defined as

Var [X] = EX∼D

[
(X − EX∼D[X])

2
]

= EX∼D

[
X2 − 2XEX∼D[X] + EX∼D[X]

2
]

= EX∼D
[
X2
]
− EX∼D [2XEX∼D[X]] + EX∼D

[
EX∼D[X]

2
]

= EX∼D
[
X2
]
− 2EX∼D[X]

2
+ EX∼D[X]

2

= EX∼D
[
X2
]
− EX∼D[X]

2

The idea with this definition is that we are measuring the expected squared
deviation of any given sample from the mean of the distribution. (Using the
square rather than the absolute value of the deviation makes analysis easier). If
the dataset is more spread out, with more points farther away from the average,
then the variance will be high. A very concentrated dataset will have a low
variance.

Similarly, when we talk about the variance of SGD, what we are trying to
measure is the average difference between the gradient computed at a single
datapoint and the gradient averaged over all data points. In this case, we are
measuring the variance of vectors. There are a few ways to do that, but for this
class we’ll adopt the following definition: for a multivariable distribution D, let
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µ = EX∼D[X]. Then

Var [X] = EX∼D

[
‖X − µ‖2

]
= EX∼D

[
(X1 − µ1)

2
+ · · ·+ (Xn − µn)

2
]

= EX∼D

[
(X1 − µ1)

2
]

+ · · ·+ EX∼D

[
(Xn − µn)

2
]

= EX∼D
[
X2

1

]
− µ2

1 + · · ·+ EX∼D
[
X2
n

]
− µ2

n

=
(
EX∼D

[
X2

1

]
+ · · ·+ EX∼D

[
X2
n

])
−
(
µ2
1 + · · ·+ µ2

n

)
= EX∼D

[
X2

1 + · · ·+X2
n

]
− ‖µ‖2

= EX∼D

[
‖X‖2

]
− ‖µ‖2

Intuitively, this captures the average difference (specifically, the squared Eu-
clidean distance) between the gradient at each measured point and the average
gradient. Again, if the variance is high, that indicates that our measured points
are more likely to be far away from the average.

Fundamentally, with SGD we are trading variance for speed. High variance
causes problems because it means the gradient estimates we use for updating
our parameters can be quite different from the true gradient. This causes the
learning process to become chaotic. Rather than smoothly following the gra-
dients to a point of minimal loss, SGD often jumps around and moves in the
wrong direction at times. On the other hand, these noisy gradient estimates
can be computed much faster than the true gradient, which means the learning
process is able to converge faster.

Aside I should point out that the above definition is not standard. More
formally, the variance of a vector distribution is usually defined as

Var[X] = EX∼D

[
(X − µ)(X − µ)

T
]
,

often called the variance-covariance (or simply covariance) matrix. However this
definition is unweildy for our purposes, so I will use the previous definition. Note
that our definition is equivalent to taking the trace of the covariance matrix,
and is also equivalent to swapping the order of the multiplication:

Var[X] = EX∼D

[
(X − µ)

T
(X − µ)

]
.

3 Minibatches

Minibatches are an approach to reduce variance in SGD. The idea is that rather
than computing the gradient at a single point, we compute the gradient over
some batch of data. Specifically, we partition the dataset D into equal-sized
subsets D1, . . . , Dk and use the update rule θ ← θ − εEx,y∼Di [∇θ`(θ;x, y)].
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Since batched gradient descent is also often refered to as SGD, I will use the
term pure SGD to refer to the situation where we use a single datapoint as
an estimator. Batched gradient descent represents a middle ground between
standard gradient descent (in which the entire dataset is one batch) and pure
SGD (in which each datapoint is its own batch). Ideally, we are looking for a
batch size that allows for both minimal variance and fast computation.

The primary advantage of minibatches compared to pure SGD is that they
reduce the variance of the gradient estimate. First, let’s look at the variance of
gradient estimates with pure SGD:

VarSGD [∇θ`(θ;x, y)] = Ex,y∼D

[
‖∇θ`(θ;x, y)‖2

]
− ‖∇θL(θ)‖2 ,

compared to the estimates with minibatches:

VarBatch [∇θ`(θ;x, y)] = EDi

[
Ex,y∼Di

[‖∇θ`(θ;x, y)‖]2
]
− ‖∇θL(θ)‖2 .

The last term is identical in both cases, so really we just need to compare the
first terms,

Ex,y∼D

[
‖∇θ`(θ;x, y)‖2

]
and EDi

[
Ex,y∼Di [‖∇θ`(θ;x, y)‖]2

]
.

Here we can make use of Jensen’s inequality, which states that for a convex
function φ, φ (E [X]) ≤ E [φ(X)]. In this case, the convex function we are
considering is φ(X) = ‖X‖2, and we can use this to show

Ex,y∼Di
[‖∇θ`(θ;x, y)‖]2 ≤ Ex,y∼Di

[
‖∇θ`(θ;x, y)‖2

]
.

From here we can add an expectation over batches to both sides to conclude

EDi

[
Ex,y∼Di

[‖∇θ`(θ;x, y)‖]2
]
≤ EDi

[
Ex,y∼Di

[
‖∇θ`(θ;x, y)‖2

]]
.

Finally, we combine the two expectations on the right side to get

EDi

[
Ex,y∼Di

[‖∇θ`(θ;x, y)‖]2
]
≤ Ex,y∼D

[
‖∇θ`(θ;x, y)‖2

]
and therefore

VarBatch [∇θ`(θ;x, y)] ≤ VarSGD [∇θ`(θ;x, y)] .

This result shows that minibatches decrease the variance in stochastic gradi-
ent descent. Intuitively, this makes sense because we are computing our gradient
estimates using more information. The flip side is that the more data you use
to compute your gradient estimates, the more time it wil take. This is the main
tradeoff to keep in mind when choosing a batch size. Generally speaking, I would
recommend starting with relatively small batches, usually in a power-of-2 size
(for example, 32 or 64) and then experimenting from there.
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