
Neural Network Initialization

Greg Anderson

February 23, 2022

In this supplement, we will discuss how to initialize the weights in neural
networks. We saw in class that setting all the weights to zero does not work
because the gradients will always be zero, and we said that usually we will
randomly choose weight values from a normal distribution. Further, we said
that the mean of the normal distribution should be zero. Here, we are interested
in determining the standard deviation we should use in our normal distribution
when initialization network weights.

1 Setup

First, let’s introduce a property of normal distributions which will be useful in
our analysis. If ~a is any vector sampled from a multivariate normal distribution
~a ∼ N (~µ,Σ) and ~x is any vector, then

~aT~x ∼ N
(
~µT~x, ~xT Σ~x

)
For our purposes, we will be assuming that ~µ = 0 and Σ = σ2I for some σ (where
I is the identity matrix of the appropriate dimension). That is, each element of
~a is sampled independently from the (univariate) normal distribution N (0, σ2).
In that case, we have that ~µT~x = 0 and

~xT Σ~x = ~xT (σ2I)~x = σ2~xT~x = σ2 ‖~x‖2 .

Therefore, ~a ∼ N (0, σ2I) and ~aT~x ∼ N (0, ‖x‖2σ2).
Since we are often going to talk about matrix-vector multiplications in neural

networks, let’s extend the previous result to handle matrices. When we do
a matrix-vector multiplication, what we are really doing is computing a dot
product between each row of the matrix and the vector. That is, for a matrix A
and a vector ~x, we have (A~x)i = Ai~x. where Ai is the i’th row of A. If we assume
each element of A is independently sampled from a normal distributionN (0, σ2),
then we have Ai~x ∼ N (0, ‖x‖2σ2) for each i, and therefore A~x ∼ N (0, ‖x‖2σ2I).

Now that we can talk about how random matrix multiplication affects a vec-
tor, let’s look at how a ReLU affects a random vector. Suppose ~x ∼ N (0, σ2I).
We are interested in finding the expected size of the output vector after a ReLU.
That is, we want to find E[‖ReLU(~x)‖2]. The key observation here is that be-
cause the normal distribution is symmetrical and because the mean is assumed

1



to be zero, in expectation half of the elements of ~x will be less than zero. Let
nx be the number of elements in ~x. Then we have

E
[
‖ReLU(~x)‖2

]
= E

[
nx∑
i=1

max (~xi, 0)
2

]
=

nx∑
i=1

E
[
max (~xi, 0)

2
]

Because ~xi ∼ N (0, σ2), we know that E[~x2i ] = σ2 because this is a property of
the normal distribution. Any of the values which are below zero will be set to

zero by the maximum, so we end up with E
[
max (~xi, 0)

2
]

= σ2/2 and therefore

E
[
‖ReLU(~x)‖2

]
=

nx∑
i=1

E
[
max (~xi, 0)

2
]

=
1

2
nxσ

2.

2 Network Analysis

Let’s look at what happens when we use the relationships we discussed above
to analyze the values passed through a neural network. To keep things a little
simpler, we will assume that our network only contains fully connected linear
layers and ReLUs, and we will further assume that all the biases are zero. That
is, our network is defined by the following equations, where ~x is the input and
Wi is the weight of the i’th layer.

~b0 = ~x

~ai+1 = Wi+1
~bi

~bi+1 = ReLU(~ai+1)

Here ~ai is the output of the i’th linear layer and ~bi is the output of the ReLU
whose input is ~ai.

Now let’s assume each layer is initialized with each weight value drawn inde-
pendently from N (0, σ2

Wi
). Notice that the standard deviation may be different

for differen layers, but within a single layer each element of the weight matrix is
drawn from the same distribution. We will also use ni to indicate the number
of elements in ~bi. After the first layer, we have ~a1 = W1

~b0 and therefore

~a1 ∼ N (0, ‖~x‖2σ2
W1
I).

Let σ1 = ‖~x‖σW1 so that ~a1 ∼ N (0, σ2
1). Now after we pass through the ReLU,

we have

E

[∥∥∥~b1∥∥∥2] =
1

2
n1σ

2
1 .

We are going to make an additional simplifying assumption here which is that
‖~bi‖2 ≈ E[‖~bi‖2]. Continuing inductively: for i > 1, we have ~ai = Wi

~bi−1 so

~ai ∼ N (0, ‖~bi−1‖2σ2
Wi
I).

2



Similar to the first layer, let σi = ‖~bi−1‖σWi so that ~ai ∼ N (0, σ2
i ). From here,

we find ∥∥∥~bi∥∥∥2 ≈ E

[∥∥∥~bi∥∥∥2] =
1

2
niσ

2
i .

Now let’s combine some results: since σi = ‖~bi−1‖σWi
and ‖~bi−1‖2 =

ni−1σ
2
i−1/2 we have that for i > 1

σi =
1√
2
σWi

σi−1
√
ni−1.

This gives us a recurrance relation which can tell us the expected magnitude of
the output of each layer based on the output of the previous layer. If we apply
this relationship repeatedly, we can represent the magnitude of an output by
the following expression:

σi = ‖~x‖2 σW1

i∏
k=2

1√
2
σWk

√
nk−1.

This result gives us an expression to compute the size of the output of any
layer in a randomly initialized network, depdending on the input size and the
initialization parameters of all preceding layers.

We can go through a very similar process to compute the magnitude of the
gradients in a random network given the magnitude of the gradient with respect
to the logits. Because the process is almost exactly the same, I will spare you
the details and just present the final result:

σ̂i = ‖∇~o`(~o)‖σWN

N−1∏
k=i

1√
2
σWk

√
ni

In order to train the network effectively, we want to choose σWi such that
the output and gradient magnitudes are roughly the same for all layers of the
network. To do this, we want each term in the products above to be one. This
leads to our two main initialization schemes: Kaiming initialization and Xavier
initialization.

In Kaiming initialization, we choose either outputs or gradients, and try to
keep the magnitudes of the chosen values constant. For example, if we pick
outputs, then we want σi to be the same for all i. To do this, we set

σWi
=
√

2
1

√
ni−1

,

and then notice that the product in the σi expression above simply becomes
one. Similarly, if we choose to keep the gradient magnitudes constant, we would
choose

σWi =
√

2
1
√
ni
.

3



In both cases, it is worth noting that only the input or output size of a layer
affects the standard deviation of the initialization distrubition. If we want to
keep the outputs constant, we use ni−1, which is the number of inputs to the
layer, and if we want to keep the gradients constant we use ni, which is the
number of outputs.

The downside of Kaiming initialization is that whichever value we don’t
choose can vary quite a bit between layers. For example, if we choose to keep the
output magnitudes constant, the gradients may change dramatically between
layers. To solve that problem, Xavier initialization attempts to balance both
the gradient and the output magnitudes by using the average of the input and
output sizes. That is, in Xavier initialization

σWi =
√

2

√
2

ni−1 + ni
.

In this case, neither the outputs not the gradients have truly constant magni-
tude, but we also prevent the variance on either from getting too high.

4


