Probability, Estimation, and Sampling

Discrete Probability Distributions

- Event space $A=\{1,2, \ldots, n\}$
- Distribution $\quad P: A \rightarrow[0,1], \sum_{a \in A} P(a)=1$
- Intuitively, $P(a)$ is the chance that a happens
- Networks output distributions

Conditional Probability

- Chance that a happens given $\theta: P(a \mid \theta)$
- E.g., roll two 6-sided dice and call the results a and b

$$
P(a+b=12)=\frac{1}{36} \quad P(a+b=12 \mid a=6)=\frac{1}{6}
$$

- Model parameters

Likelihood

- A function of θ describing the probability of observing data x given θ

$$
L(\theta)=L(\theta ; x)=P(x \mid \theta)
$$

Sampling

$a \sim P$: Generate events a according to distribution P

Sampling bias: Observed data does not follow the distribution

Expected Value

$$
\begin{gathered}
\mathrm{E}_{a \sim \mathrm{P}}[f(a)]=\sum_{a} P(a) f(a) \approx \frac{1}{N} \sum_{a \sim P} f(a) \\
\mathrm{E}_{a \sim \mathrm{P}}[c f(a)]=c \mathrm{E}_{a \sim \mathrm{P}}[f(a)] \\
\mathrm{E}_{a \sim \mathrm{P}}[f(a)+g(a)]=\mathrm{E}_{a \sim \mathrm{P}}[f(a)]+\mathrm{E}_{a \sim \mathrm{P}}[g(a)] \\
\mathrm{E}_{a \sim \mathrm{P}}[f(a) g(a)] \neq \mathrm{E}_{a \sim \mathrm{P}}[f(a)] \mathrm{E}_{a \sim \mathrm{P}}[g(a)]
\end{gathered}
$$

