

Nonlinear Models

Why Nonlinear Models?

Extra Linear Layers Don't Help

Activation Functions

Nonlinear functions that are differentiable (almost) everywhere

Rectified Linear Unit – ReLU

 $\operatorname{ReLU}(x) = \max(x, 0)$

XOR

Layers

Only non-activation layers are counted when we describe the depth of a network

E.g., this is a three-layer network

Deep Networks

- Alternation of linear layers with activation functions
- Can approximate any continuous function (assuming a sufficient number of layers and sufficient width)

Activation Functions – Old

Don't use these!

Activation Functions – ReLU

"Dead ReLU"

Initialize carefully

Smaller learning rate

Solving the "Dead ReLU" Problem

Leaky ReLU

 $f(x) = \max(x, \alpha x)$ $0 < \alpha < 1$

 α can be a learned parameter: "Parameterized ReLU (PReLU)"

Exponential Linear Unit (ELU)

Choosing Activations

- Start with ReLU
 - Initialize carefully (we'll talk about this more later)
 - Use a small learning rate
- If ReLU fails, try a leaky ReLU or PReLU
- Don't use sigmoid or tanh