

#### **Dilation and Upconvolution**

## **Receptive Field – Striding**



# Segmentation

Instead of classifying the whole image, classify each pixel



We need to keep all of the spatial resolution

## Dilation

Increase the receptive field without increasing kernel size or losing resolution





Holes

A trous

| а | b | С |
|---|---|---|
| d | е | f |
| g | h | i |

| a | b | С |
|---|---|---|
|   |   |   |
| d | е | f |
|   |   |   |
| g | h | i |

### **Receptive Field – Dilation**



## Upconvolution

#### Dilate the input





#### Transpose convolution

"Deconvolution"

Fractionally strided convolution

## Upconvolution





#### **Residual Connections**

# Deep Networks are Hard to Train

- We can train maybe 10-15 layers with the techniques we have seen so far.
- 20-30 with some other techniques we will see next week.



. . .

#### Deep Networks are Hard to Train



#### **Residual Connections**



#### **Residual Connections – Gradient**



# Upconvolution – Residual Connections

