

Data Management

Examining the Data

- Look at some random inputs
- Look at the largest and smallest inputs (by file size)
 - These are the most likely to be weird or corrupted

• Manually solve the task

Splitting

- Training set used by SGD to learn model parameters
- Validation set used by us to learn hyperparameters
- Test set used once to measure final model performance

Overfitting

- Goal: Learn to classify *unseen* images
- Optimization objective: Learn to classify *training set* images

Training set (60-80% of data) Model parameters overfit by SGD

Validation (10-20%) Hyperparameters overfit by us

Test (10-20%) Not used in training, not overfit Be sure to split randomly

Tuning

Initialization

Initialization – All Zero

	x=???	$g_1 = 0$	
Linear 1	$\mathbf{v}_1 = \mathbf{W}_1 \mathbf{x}$	$\boldsymbol{g}_1 = \boldsymbol{W}_1^{\mathrm{T}} \boldsymbol{g}_2$	$\nabla_{\mathbf{W}_1} \ell(\mathbf{v}_3) = g_2 \mathbf{x}^{\mathrm{T}}$
	$\mathbf{v}_1 = 0$	$g_2 = 0$	0
ReLU	$\mathbf{v}_2 = \max(\mathbf{v}_{1,0})$	$g_2 = g_3[v_1 > 0]$	
	$\mathbf{v}_2 = 0$	$g_3 = 0$	
Linear 2	$v_3 = W_2 v_2$	$g_3 = W_2^T g_o$	$\nabla_{\mathbf{W}_2} \boldsymbol{\ell}(\mathbf{v}_3) = \boldsymbol{g}_o \mathbf{v}_2^{\mathrm{T}}$
	$\mathbf{v}_3 = 0$	g _o =???	0
$g_o = \nabla_{\mathbf{v}_3} \mathscr{L}(\mathbf{v}_3)$			

Initialization – Random

In practice, the mean is zero and we need to choose a standard deviation

Initialization – Scaling

$$\mathbf{o} = \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{x}$$
$$\nabla_{\mathbf{W}_{1}} \ell(\mathbf{o}) = \left(\mathbf{W}_{2}^{\mathrm{T}} \left(\nabla_{\mathbf{o}} \ell(\mathbf{o})\right)\right) \mathbf{x}^{\mathrm{T}}$$
$$\nabla_{\mathbf{W}_{2}} \ell(\mathbf{o}) = \left(\nabla_{\mathbf{o}} \ell(\mathbf{o})\right) \left(\mathbf{W}_{1} \mathbf{x}\right)^{\mathrm{T}}$$

Choosing a Standard Deviation

Math

(See the supplementary material for details)

Kaiming Initialization

• Choose either activations or gradients and keep the magnitude roughly constant:

- Activations:

$$W \sim N\left(0, \frac{2}{n_{in}}\right)$$

- Gradients:

$$W \sim N\left(0, \frac{2}{n_{out}}\right)$$

Xavier Initialization

• Keep both activation and gradient magnitudes roughly constant throughout the network

W~
$$N\left(0, \frac{4}{n_{\rm in}+n_{\rm out}}\right)$$

In Practice

• The PyTorch defaults are usually good enough.

- The last layer can be initialized to zero.
 - If the previous layers are not zero, the last activation is not zero, so we still get gradients.