Data Management



Examining the Data

* Look at some random inputs

* Look at the largest and smallest inputs (by file size)
- These are the most likely to be weird or corrupted

Small file

* Manually solve the task



Splitting

* Training set — used by SGD to
learn model parameters

* Validation set — used by us to
learn hyperparameters

* Test set — used once to measure
final model performance



Overfitting
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Tuning
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Initialization



Initialization — All Zero

Linear 1 v,=W, X 91:WIQ2 le f(V3):g2XT
v,=0 g =0 0

ReLU v,=max(v,0)  g,=g,[v,>0]
v,=0 g.=0

Linear 2 v, =W, vV, 9,=W, g, Vuw, £(v,)=g,v,
v,=0 g, =777 0



Initialization — Random
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In practice, the mean is zero and we need to choose a standard deviation



Initialization — Scaling

0=W,W,;Xx
V. tlo)=W;(V, £(0))|x"
V., £(0)=(V, #(0)|(W,x)"

W[~ W] [Wi[>[[w

// \\ e
Q | .

.
o
\

[
¥
V4



Choosing a Standard Deviation

Math

(See the supplementary material for details)



Kaiming Initialization

* Choose either activations or gradients and keep the
magnitude roughly constant:

- Activations: W~N

- Gradients: W~N




Xavier Initialization

* Keep both activation and gradient magnitudes roughly
constant throughout the network

W~N|O,

n._+n

m out




In Practice

 The PyTorch defaults are usually good enough.

* The last layer can be Initialized to zero.

- If the previous layers are not zero, the last activation is not
zero, so we still get gradients.
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