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Input Normalization

x i
x i−μx

σx

Average over
all elements of

all inputs

For images, compute mean and standard deviation
for each channel – that is, one red mean, one blue

mean, and one green mean.



  

Vanishing / Exploding Gradients
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Normalization
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y=α x+β

E[y ]=0

Var [y ]=1



  

Batch Normalization

Conv

ReLU

BatchNorm y=α x+β E[y ]=0

Var [y ]=1

Over the entire
batch
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Batch Normalization

✔ Keeps the activation 
magnitudes in check

✔ Deals with badly scaled 
weights

✗ Mixes gradient information 
between inputs
– Mitigated by large batches

x∈ℝ
B×C×H×W

x i , c , j , k→∞

μc→∞ σ c→∞



  

BatchNorm at Test Time

● Usually we don’t test on a batch of data.

● Keep a running average of the mean and standard 
deviation during training, then save those values.



  

Layer Normalization

● Same as BatchNorm, but we 
compute statistics per input rather 
than per channel.

● Prevents cross-talk.
● Training and testing are the same.
● In practice, works well for 

sequence models but not in 
computer vision.

x∈ℝ
B×C×H×W

μi=
1

CHW ∑
c , j , k

xi , c , j , k

σ i
2
=

1
CHW ∑

c , j , k
(x i , c , j , k−μi )

2



  

Instance Normalization

● Compute statistics per input 
and per channel
– Sum over only spatial 

locations
● Statistics are unstable
● Not so good in recognition
● Works okay for image 

generation and computer 
graphics

x∈ℝ
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Group Normalization

● Compute statistics over 
groups of channels
– Between instance 

normalization and layer 
normalization

● More flexible than layer 
normalization, more stable 
than instance normalization. 

x∈ℝ
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Summary

Batch normalization Instance normalization

Layer normalization Group normalization



  

Normalization in Practice

Conv

ReLU

BatchNorm

Conv

ReLU

BatchNorm

● No bias needed in Conv
● Activations are zero mean

● ReLU will zero out half of 
activations

● Learn a scale and bias 
parameter in the normalization 
layer (affine=True)

● Scale and bias in the normalization 
layer are optional (affine=False).

● Conv is unchanged

Proposed First

Simpler

NOTE: Do not normalize after linear layers
(statistical estimates are too unstable)

y=
x−μc

σc
γ+β
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