

Normalization

Why Normalize?

o=w x

Linear

x

o

∂ℓ(o)

∂w
=(dℓ(o)

d o)xT

Vector
input

Scalar
output

x i>0

(∂ℓ(o)

∂w)
i

≥0 (∂ℓ(o)

∂w)
i

≤0

Scalar
derivative

Why Normalize?

o=w x

Linear

x

o

∂ℓ(o)

∂w
=(dℓ(o)

d o)xT

x∈ℝ
2 |x1|≪|x2|

∂ℓ(o)

∂w1

≪
∂ℓ(o)

∂w2

Input Normalization

x i
x i−μx

σx

Average over
all elements of

all inputs

For images, compute mean and standard deviation
for each channel – that is, one red mean, one blue

mean, and one green mean.

Vanishing / Exploding Gradients

Conv

ReLU

Conv

ReLU

Conv

ReLU

...

...

Conv’

ReLU’

Conv’

ReLU’

Conv’

ReLU’

...

...

W→∞ W→∞

v→∞

v→∞

g→∞

v=???

v=???

g=???

g=???

Exploding

Vanishing

Lo
ss

Lo
ss

‖∂ℓ(o)

∂W i
‖≪‖Wi‖

Normalization

Conv

ReLU

Conv

ReLU

Conv

ReLU

Conv

ReLU

Conv

ReLU

Conv

ReLU

Normalize

y=α x+β

E[y]=0

Var [y]=1

Batch Normalization

Conv

ReLU

BatchNorm y=α x+β E[y]=0

Var [y]=1

Over the entire
batch

x∈ℝ
B×C×H×W

y i , c , j , k=
xi , c , j , k−μc

σ c

μc=
1

BHW ∑
i , j , k

xi , c , j , k

σ c
2
=

1
BHW ∑

i , j , k
(xi , c , j , k−μc)

2

Batch Normalization

✔ Keeps the activation
magnitudes in check

✔ Deals with badly scaled
weights

✗ Mixes gradient information
between inputs
– Mitigated by large batches

x∈ℝ
B×C×H×W

x i , c , j , k→∞

μc→∞ σ c→∞

BatchNorm at Test Time

● Usually we don’t test on a batch of data.

● Keep a running average of the mean and standard
deviation during training, then save those values.

Layer Normalization

● Same as BatchNorm, but we
compute statistics per input rather
than per channel.

● Prevents cross-talk.
● Training and testing are the same.
● In practice, works well for

sequence models but not in
computer vision.

x∈ℝ
B×C×H×W

μi=
1

CHW ∑
c , j , k

xi , c , j , k

σ i
2
=

1
CHW ∑

c , j , k
(x i , c , j , k−μi)

2

Instance Normalization

● Compute statistics per input
and per channel
– Sum over only spatial

locations
● Statistics are unstable
● Not so good in recognition
● Works okay for image

generation and computer
graphics

x∈ℝ
B×C×H×W

μi , c=
1
HW∑

j , k

xi , c , j , k

σ i , c
2

=
1
HW∑

j , k
(xi , c , j , k−μ i , c)

2

Group Normalization

● Compute statistics over
groups of channels
– Between instance

normalization and layer
normalization

● More flexible than layer
normalization, more stable
than instance normalization.

x∈ℝ
B×C×H×W

μi , g=
1

SHW
∑
j , k

∑
c=S (g−1)

S g−1

xi , c , j , k

σ i , g
2

=
1

SHW
∑
j , k

∑
c=S (g−1)

S g−1

(x i , c , j , k−μ i , g)
2

S=⌊C /G ⌋

Summary

Batch normalization Instance normalization

Layer normalization Group normalization

Normalization in Practice

Conv

ReLU

BatchNorm

Conv

ReLU

BatchNorm

● No bias needed in Conv
● Activations are zero mean

● ReLU will zero out half of
activations

● Learn a scale and bias
parameter in the normalization
layer (affine=True)

● Scale and bias in the normalization
layer are optional (affine=False).

● Conv is unchanged

Proposed First

Simpler

NOTE: Do not normalize after linear layers
(statistical estimates are too unstable)

y=
x−μc

σc
γ+β

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

