

Policy Gradients

Some Extra Complexity...

$$\tau = s_0, a_0, s_1, a_1, \dots, s_n, a_n$$
 $R(\tau) = \sum_{i=1}^n \gamma^i r(s_i, a_i)$

Policies are distributions
$$\ \pi(a_i|s_i)$$

A policy π induces a distribution P_{π} over trajectories au

Find
$$\pi$$
 which maximizes $\mathrm{E}_{_{ au^{\sim}\mathrm{P}_{\pi}}}[R(\, au\,)]$

Policy Gradients

We can't compute gradients through the environment but we can *approximate* gradients on the *expected* return

$$\nabla_{\theta} P_{\theta}(x) = P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)$$

$$\begin{split} \mathbf{E}_{\tau \sim \mathbf{P}_{\pi}}[R(\tau)] &= \sum_{\tau} P_{\pi}(\tau) R(\tau) \\ \nabla \mathbf{E}_{\tau \sim \mathbf{P}_{\pi}}[R(\tau)] &= \sum_{\tau} \nabla (P_{\pi}(\tau) R(\tau)) \\ &= \sum_{\tau} R(\tau) P_{\pi}(\tau) \nabla \log P_{\pi}(\tau) \\ &= \mathbf{E}_{\tau} R(\tau) \nabla \log P_{\pi}(\tau) \\ \end{split}$$

For a more rigorous argument, see "Policy Gradient Methods for Reinforcement Learning with Function Approximation" by Sutton, McAllester, Singh, and Mansour. NeurIPS 1999.

REINFORCE

Approximate by
sampling
$$E_{\tau \sim P_{\pi}}[R(\tau)\nabla \log P_{\pi}(\tau)] \approx \frac{1}{N} \sum_{\tau \sim P_{\pi}} [R(\tau)\nabla \log P_{\pi}(\tau)]$$

- Requires *a lot* of samples
 - High variance in gradient estimates
 - Rollouts cannot be reused

Baselines

• Reduce variance of gradient estimates

$$\frac{1}{N} \sum_{\tau \sim P_{\pi}} [R(\tau) \nabla \log P_{\pi}(\tau)] \rightarrow \frac{1}{N} \sum_{\tau \sim P_{\pi}} [(R(\tau) - b) \nabla \log P_{\pi}(\tau)]$$

Simplest case:
Average return

- Expected gradient estimates are the same
 - But variance is reduced

$$\mathbf{E}_{\tau \sim \mathbf{P}_{\pi}}[b \nabla \log P_{\pi}(\tau)] = 0$$

Off-Policy Algorithms

$$\frac{1}{N} \sum_{\tau \sim P_{\pi}} [R(\tau) \nabla \log P_{\pi}(\tau)] \approx \frac{1}{N} \sum_{\tau \sim Q} \left[\frac{P_{\pi}(\tau)}{Q(\tau)} R(\tau) \nabla \log P_{\pi}(\tau) \right]$$

- For some number of iterations
 - For some number of episodes
 - Collect data and store it in a replay buffer
 - Update the baseline
 - For some number of batches
 - Estimate the gradient on a sample from the replay buffer
 - Take a gradient step

Policy Gradient Algorithms

- Do not require demonstrations
- Work well in high-dimensional parameter spaces
- Are (usually) not sample efficient
- Are high-variance (though there is some work on this)

Gradient-Free Optimization

Gradient-Free Setting

Gradients are hard, but evaluation is easy

For an evaluation function f we can compute f(heta) easily but not $abla_ heta f(heta)$

Assume the evaluation function is smooth

Random Search

- Randomly generate samples
- Score each one
- Choose the best

Cross Entropy Method

- Initialize μ , σ
- Loop
 - Sample $\theta_1, \ldots, \theta_n \sim N(\mu, \sigma)$
 - Compute $f(\theta_1), \ldots, f(\theta_n)$
 - Select top p% of parameters values Θ
 - Compute $\mu = E[\Theta], \sigma = \sqrt{Var[\Theta]}$

Evolutionary Strategies

- Initialize a population of solutions
- Loop
 - Mutate each solution
 - Evaluate the results
 - Recombine high-performing policies

Augmented Random Search

- Initialize θ
- Loop

- Sample
$$\epsilon_1, \ldots, \epsilon_n \sim N(0, I)$$

- For each ϵ_i evaluate $r_i^+ = f(\theta + v\epsilon_i)$ and $r_i^- = f(\theta v\epsilon_i)$
- Compute $\sigma_R = \sqrt{Var[\{r_1^+, ..., r_n^+, r_1^-, ..., r_n^-\}]}$

- Update
$$\theta := \theta + \frac{\alpha}{n \sigma_R} \sum_{i=1}^n [r_i^+ - r_i^-] \epsilon_i$$

Horia Mania, Aurelia Guy, Benjamin Recht. 2018. Simple Random Search Provides a Competitive Approach to Reinforcement Learning. NeurIPS 2018

Gradient-Free Optimization

- Trade sampling trajectories for sampling parameters.
- Works best in small parameter space
- Works best if there is a relatively simple correlation between parameters and returns

Open Problem: Structure vs. Data