

Policy Gradients

Some Extra Complexity...

τ =s0 , a0 , s1 , a1 ,…, sn , an R (τ)=∑
i=1

n

γ
ir (si , ai)

A policy induces a distribution over trajectoriesπ τPπ

Eτ∼Pπ
[R (τ)]Find which maximizesπ

Policies are distributions π(ai∣si)

Policy Gradients

Eτ∼Pπ
[R (τ)]=∑

τ
Pπ (τ)R (τ)

∇θPθ(x)=Pθ(x)∇θ log Pθ(x)

∇ Eτ∼Pπ
[R (τ)]=∑

τ
∇(Pπ (τ)R (τ))

=∑
τ
R (τ)Pπ(τ)∇ log Pπ(τ)

=Eτ∼Pπ
[R (τ)∇ logPπ (τ)]

We can’t compute gradients through the environment but
we can approximate gradients on the expected return

For a more rigorous argument, see “Policy
Gradient Methods for Reinforcement Learning with
Function Approximation” by Sutton, McAllester,
Singh, and Mansour. NeurIPS 1999.

REINFORCE

Eτ∼Pπ
[R (τ)∇ logPπ (τ)]

Approximate by
sampling

≈
1
N ∑

τ∼Pπ

[R (τ)∇ log Pπ(τ)]

● Requires a lot of samples
● High variance in gradient estimates
● Rollouts cannot be reused

Baselines

● Reduce variance of gradient estimates

● Expected gradient estimates are the same
– But variance is reduced

1
N ∑

τ∼Pπ

[R(τ)∇ log Pπ(τ)]

Simplest case:
Average return

Eτ∼Pπ
[b∇ log Pπ(τ)]=0

→
1
N ∑

τ∼Pπ

[(R (τ)−b)∇ log Pπ(τ)]

Off-Policy Algorithms

● For some number of iterations
– For some number of episodes

● Collect data and store it in a replay buffer

– Update the baseline
– For some number of batches

● Estimate the gradient on a sample from
the replay buffer

● Take a gradient step

Replay Buffer

1
N ∑

τ ∼Pπ

[R (τ)∇ log Pπ(τ)]≈
1
N ∑

τ ∼Q
[Pπ (τ)

Q (τ)
R (τ)∇ log Pπ(τ)]

Policy Gradient Algorithms

✔ Do not require demonstrations
✔ Work well in high-dimensional parameter spaces
✗ Are (usually) not sample efficient
✗ Are high-variance (though there is some work on

this)

Gradient-Free Optimization

Gradient-Free Setting

Gradients are hard, but evaluation is easy

Parameters Evaluation Score

For an evaluation function we can compute easily but notf f (θ) ∇θ f (θ)

Assume the evaluation function is smooth

Random Search

● Randomly generate
samples

● Score each one
● Choose the best

2

-1

-1

3
0

-2

5

2 1

0

-1

-1
4

Cross Entropy Method

● Initialize
● Loop

– Sample
– Compute
– Select top p% of parameters

values
– Compute

μ ,σ

θ1 ,…,θn ∼N (μ ,σ)

f (θ1),…, f (θn)

Θ

μ=E[Θ] ,σ =√Var [Θ]

Evolutionary Strategies

● Initialize a population of solutions
● Loop

– Mutate each solution
– Evaluate the results
– Recombine high-performing policies

Augmented Random Search

● Initialize
● Loop

– Sample
– For each evaluate and
– Compute

– Update

θ

ϵ1 ,… ,ϵn∼N (0, I)

ϵi r i
+
= f (θ +νϵi)

θ := θ + α
nσR

∑
i=1

n

[r i
+
−ri

−
]ϵi

r i
−
=f (θ −νϵi)

σR=√Var [{r1
+ ,… , rn

+ ,r1
− ,…, rn

−
}]

Horia Mania, Aurelia Guy, Benjamin Recht. 2018.
Simple Random Search Provides a Competitive
Approach to Reinforcement Learning. NeurIPS 2018

Gradient-Free Optimization

● Trade sampling trajectories for sampling parameters.
● Works best in small parameter space
● Works best if there is a relatively simple correlation

between parameters and returns

Open Problem: Structure vs. Data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

