
  

Policy Gradients



  

Some Extra Complexity...

τ =s0 , a0 , s1 , a1 ,…, sn , an R (τ )=∑
i=1

n

γ
ir (si , ai)

A policy      induces a distribution       over trajectoriesπ τPπ

Eτ∼Pπ
[R (τ )]Find      which maximizesπ

Policies are distributions π(ai∣si)



  

Policy Gradients

Eτ∼Pπ
[R (τ )]=∑

τ
Pπ (τ )R (τ )

∇θPθ(x)=Pθ(x)∇θ log Pθ(x)

∇ Eτ∼Pπ
[R ( τ )]=∑

τ
∇(Pπ (τ )R (τ ))

=∑
τ
R (τ )Pπ( τ )∇ log Pπ( τ )

=Eτ∼Pπ
[R (τ )∇ logPπ (τ )]

We can’t compute gradients through the environment but 
we can approximate gradients on the expected return

For a more rigorous argument, see “Policy 
Gradient Methods for Reinforcement Learning with 
Function Approximation” by Sutton, McAllester, 
Singh, and Mansour. NeurIPS 1999.



  

REINFORCE

Eτ∼Pπ
[R (τ )∇ logPπ (τ )]

Approximate by
sampling

≈
1
N ∑

τ∼Pπ

[R ( τ )∇ log Pπ( τ )]

● Requires a lot of samples
● High variance in gradient estimates
● Rollouts cannot be reused



  

Baselines

● Reduce variance of gradient estimates

● Expected gradient estimates are the same
– But variance is reduced

1
N ∑

τ∼Pπ

[R( τ )∇ log Pπ( τ )]

Simplest case:
Average return

Eτ∼Pπ
[b∇ log Pπ(τ )]=0

→
1
N ∑

τ∼Pπ

[(R ( τ )−b)∇ log Pπ( τ )]



  

Off-Policy Algorithms

● For some number of iterations
– For some number of episodes

● Collect data and store it in a replay buffer

– Update the baseline
– For some number of batches

● Estimate the gradient on a sample from 
the replay buffer

● Take a gradient step

Replay Buffer

1
N ∑

τ ∼Pπ

[R ( τ )∇ log Pπ( τ )]≈
1
N ∑

τ ∼Q
[ Pπ (τ )

Q (τ )
R (τ )∇ log Pπ(τ )]



  

Policy Gradient Algorithms

✔ Do not require demonstrations
✔ Work well in high-dimensional parameter spaces
✗ Are (usually) not sample efficient
✗ Are high-variance (though there is some work on 

this)



  

Gradient-Free Optimization



  

Gradient-Free Setting

Gradients are hard, but evaluation is easy

Parameters Evaluation Score

For an evaluation function    we can compute           easily but notf f (θ) ∇θ f (θ)

Assume the evaluation function is smooth



  

Random Search

● Randomly generate 
samples

● Score each one
● Choose the best
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Cross Entropy Method

● Initialize
● Loop

– Sample
– Compute
– Select top p% of parameters 

values
– Compute

μ ,σ

θ1 ,…,θn ∼N (μ ,σ)

f (θ1),…, f (θn)

Θ

μ=E[Θ] ,σ =√Var [Θ]



  

Evolutionary Strategies

● Initialize a population of solutions
● Loop

– Mutate each solution
– Evaluate the results
– Recombine high-performing policies



  

Augmented Random Search

● Initialize
● Loop

– Sample
– For each     evaluate                        and
– Compute 

– Update

θ

ϵ1 ,… ,ϵn∼N (0, I )

ϵi r i
+
= f (θ +νϵi)

θ := θ + α
nσR

∑
i=1

n

[r i
+
−ri

−
]ϵi

r i
−
=f (θ −νϵi)

σR=√Var [{r1
+ ,… , rn

+ ,r1
− ,…, rn

−
}]

Horia Mania, Aurelia Guy, Benjamin Recht. 2018. 
Simple Random Search Provides a Competitive 
Approach to Reinforcement Learning. NeurIPS 2018



  

Gradient-Free Optimization

● Trade sampling trajectories for sampling parameters.
● Works best in small parameter space
● Works best if there is a relatively simple correlation 

between parameters and returns



  

Open Problem: Structure vs. Data
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