Policy Gradients
Some Extra Complexity...

\[\tau = s_0, a_0, s_1, a_1, \ldots, s_n, a_n \]

\[R(\tau) = \sum_{i=1}^{n} \gamma^i r(s_i, a_i) \]

Policies are distributions \(\pi(a_i|s_i) \)

A policy \(\pi \) induces a distribution \(P_\pi \) over trajectories \(\tau \)

Find \(\pi \) which maximizes \(E_{\tau \sim P_\pi}[R(\tau)] \)
We can’t compute gradients through the environment but we can approximate gradients on the expected return.

\[
\nabla_{\theta} P_{\theta}(x) = P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)
\]

\[
E_{\tau \sim P_{\pi}}[R(\tau)] = \sum_{\tau} P_{\pi}(\tau) R(\tau)
\]

\[
\nabla E_{\tau \sim P_{\pi}}[R(\tau)] = \sum_{\tau} \nabla (P_{\pi}(\tau) R(\tau))
\]

\[
= \sum_{\tau} R(\tau) P_{\pi}(\tau) \nabla \log P_{\pi}(\tau)
\]

\[
= E_{\tau \sim P_{\pi}}[R(\tau) \nabla \log P_{\pi}(\tau)]
\]

For a more rigorous argument, see “Policy Gradient Methods for Reinforcement Learning with Function Approximation” by Sutton, McAllester, Singh, and Mansour. NeurIPS 1999.
REINFORCE

Approximate by sampling

\[E_{\tau \sim P_{\pi}} [R(\tau) \nabla \log P_{\pi}(\tau)] \approx \frac{1}{N} \sum_{\tau \sim P_{\pi}} [R(\tau) \nabla \log P_{\pi}(\tau)] \]

- Requires a lot of samples
- High variance in gradient estimates
- Rollouts cannot be reused
Baselines

- Reduce variance of gradient estimates

\[
\frac{1}{N} \sum_{\tau \sim P_\pi} \left[R(\tau) \nabla \log P_\pi(\tau) \right] \rightarrow \frac{1}{N} \sum_{\tau \sim P_\pi} \left[(R(\tau) - b) \nabla \log P_\pi(\tau) \right]
\]

- Expected gradient estimates are the same
 - But variance is reduced

\[
E_{\tau \sim P_\pi} \left[b \nabla \log P_\pi(\tau) \right] = 0
\]
Off-Policy Algorithms

\[
\frac{1}{N} \sum_{\tau \sim P_{\pi}} [R(\tau) \nabla \log P_{\pi}(\tau)] \approx \frac{1}{N} \sum_{\tau \sim Q} \left[\frac{P_{\pi}(\tau)}{Q(\tau)} R(\tau) \nabla \log P_{\pi}(\tau) \right]
\]

- For some number of iterations
 - For some number of episodes
 - Collect data and store it in a replay buffer
 - Update the baseline
 - For some number of batches
 - Estimate the gradient on a sample from the replay buffer
 - Take a gradient step
Policy Gradient Algorithms

- Do not require demonstrations
- Work well in high-dimensional parameter spaces
- Are (usually) not sample efficient
- Are high-variance (though there is some work on this)
Gradient-Free Optimization
Gradient-Free Setting

Gradients are hard, but evaluation is easy

For an evaluation function f we can compute $f(\theta)$ easily but not $\nabla_\theta f(\theta)$

Assume the evaluation function is smooth
Random Search

- Randomly generate samples
- Score each one
- Choose the best
Cross Entropy Method

- Initialize μ, σ
- Loop
 - Sample $\theta_1, \ldots, \theta_n \sim N(\mu, \sigma)$
 - Compute $f(\theta_1), \ldots, f(\theta_n)$
 - Select top p\% of parameters values Θ
 - Compute $\mu = \mathbb{E}[\Theta], \sigma = \sqrt{\text{Var}[\Theta]}$
Evolutionary Strategies

- Initialize a population of solutions
- Loop
 - Mutate each solution
 - Evaluate the results
 - Recombine high-performing policies
Augmented Random Search

- Initialize θ
- Loop
 - Sample $\epsilon_1, \ldots, \epsilon_n \sim N(0, I)$
 - For each ϵ_i evaluate $r_i^+ = f(\theta + \nu \epsilon_i)$ and $r_i^- = f(\theta - \nu \epsilon_i)$
 - Compute $\sigma_R = \sqrt{\text{Var} \left[\{ r_1^+, \ldots, r_n^+, r_1^-, \ldots, r_n^- \} \right]}$
 - Update $\theta := \theta + \frac{\alpha}{n \sigma_R} \sum_{i=1}^{n} [r_i^+ - r_i^-] \epsilon_i$

Gradient-Free Optimization

- Trade sampling trajectories for sampling parameters.
- Works best in small parameter space
- Works best if there is a relatively simple correlation between parameters and returns
Open Problem: Structure vs. Data