Safe and Verifiable Reinforcement Learning
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Safety-Critical Applications




Safety-Critical Applications
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Right side of car in postcrash damaged condition.
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Autopilot car crash involving
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Safe Reinforcement Learning
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Lagrange Multipliers

Convert the constrained problem to an unconstrained problem

argmax g, 4R () = min,_,argmax,[R(x)=2A(C(x)-d)|

]Alternate 7T updates with A updates‘\

Safety at convergence

Chen Tessler, Daniel J. Mankowitz, Shie Mannor.
“Reward Constrained Policy Optimization.” ICLR 2019.



Safe Exploration
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Constrained Policy Optimization
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Model-Based Reinforcement
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Safe MBRL
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Learning with Robust Cross-Entropy Method.” arXiv 2021. Control Using Learned Dynamics.” ICRA 2019.



Verified Reinforcement Learning
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Shielding
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Mirror Descent (for RL)

* Lift a shield to a neurosymbolic policy
* Update the policy in the neurosymbolic space

* Project the resulting neurosymbolic policy back onto the
space of shields a
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Abhinav Verma, Hoang M. Le, Yisong Yue, Swarat Chaudhuri. “Imitation-Projected
Policy Gradient for Programmatic Reinforcement Learning.” NeurlPS 20109.



Mirror Descent In REVEL

'Neural networks
are universal
. approximators

* Lift a shield to a neurosymbolic policy
- Imitation learning: g(s)=if q)(s,fg(s)) then fg(s) else g(s)

* Update the policy in the neurosymbolic space T
- Gradients descent on the neural component ~— theory here.

* Project the resulting neurosymbolic policy back onto the
space of shields

— Imitation learning once again




Results

Adaptive Cruise Control
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