
Policy Optimization with Robustness Certificates

Chenxi Yang 1 Greg Anderson 1 Swarat Chaudhuri 1

Abstract
We present a policy optimization framework in
which the learned policy comes with a machine-
checkable certificate of adversarial robustness.
Our approach, called CAROL, learns a model of
the environment. In each learning iteration, it uses
the current version of this model and an external
abstract interpreter to construct a differentiable
signal for provable robustness. This signal is used
to guide policy learning, and the abstract inter-
pretation used to construct it directly leads to the
robustness certificate returned at convergence. We
give a theoretical analysis that bounds the worst-
case accumulative reward of CAROL. We also
experimentally evaluate CAROL on four MuJoCo
environments. On these tasks, which involve con-
tinuous state and action spaces, CAROL learns
certified policies that have performance compa-
rable to the (non-certified) policies learned using
state-of-the-art robust RL methods.

1. Introduction
Reinforcement learning (RL) is an established approach to
control tasks (Polydoros & Nalpantidis, 2017; Mnih et al.,
2015), including ones in which safety is critical (Cheng et al.,
2019a; Sallab et al., 2017). However, state-of-the-art RL
methods use deep neural networks as policy representations.
This makes them vulnerable to adversarial attacks in which
carefully crafted perturbations to a policy’s inputs cause it to
behave incorrectly. These problems are even more serious in
RL than in supervised learning, as the effects of successive
mistakes can cascade over a long time horizon.

These challenges have motivated research on RL algorithms
that are robust to adversarial perturbations. In general, meth-
ods for adversarial learning can be divided into best-effort
heuristic defenses and certified approaches that guarantee
provable adversarial robustness. The latter are preferable

1UT Austin. Correspondence to: Chenxi
Yang <cxyang@cs.utexas.edu>, Greg Anderson
<ganderso@cs.utexas.edu>, Swarat Chaudhuri
<swarat@cs.utexas.edu>.

Preprint. Under review.

as heuristic defenses are often defeated by counterattacks
(Russo & Proutiere, 2019). In the supervised learning set-
ting, many certified learning techniques have been proposed
over the years (Mirman et al., 2018; Cohen et al., 2019;
Wong & Kolter, 2018). However, developing such meth-
ods for the RL setting has been difficult because of the
presence of a blackbox environment. To ensure the robust-
ness of an RL policy, one needs to reason about repeated
interactions between the policy, the environment, and the
adversary. There is no general approach to doing so. Ex-
isting approaches to deep certified RL typically sidestep
the challenge through various simplifying assumptions, for
example, that the perturbations are stochastic rather than
adversarial (Kumar et al., 2021), that the certificate only
applies to one-shot interactions between the policy and the
environment (Oikarinen et al., 2021; Zhang et al., 2020), or
that the action space is discrete (Lütjens et al., 2020).

In this paper, we develop a framework for certifiably robust
policy optimization that fills this gap in the literature. We
observe that we can reason about adversarial dynamics over
entire episodes by learning a model of the environment and
repeatedly composing it with the policy and the adversary.
To this end, we consider a state-adversarial Markov Deci-
sion Process (Zhang et al., 2020) in which the observed
states are adversarially attacked states of the original envi-
ronment. During exploration, our algorithm learns a model
of the environment using an existing model-based policy
optimization algorithm (Janner et al., 2019). We perform
abstract interpretation (Cousot & Cousot, 1977; Mirman
et al., 2018) over compositions of the current policy and the
learned environment model to estimate worst-case bounds
on the agent’s adversarial reward. The lower bound on the
reward is then used to guide policy optimization.

A key benefit of abstract interpretation is that it not only
computes bounds on a policy’s worst-case reward but also
offers a proof of this fact if it holds. A certificate of robust-
ness in our framework consists of such a proof.

Our results include a theoretical analysis of our learning
algorithm, which shows that our learned certificates give
probabilistically sound lower bounds on the accumulative re-
ward of any allowed adversary. We also empirically evaluate
CAROL over four high-dimensional MuJoCo environments
(Hopper, Walker2d, Halfcheetah, and Ant). We demonstrate

ar
X

iv
:2

30
1.

11
37

4v
1

 [
cs

.L
G

]
 2

6
Ja

n
20

23

Policy Optimization with Robustness Certificates

that CAROL is able to successfully learn certified policies
for these environments and that our strong certification re-
quirements do not compromise empirical performance.

To summarize, our main contributions are as follows:

• We offer CAROL, the first RL framework to guarantee
episode-level certifiable adversarial robustness in the pres-
ence of continuous states and actions. The framework is
based on a new combination of model-based learning and
abstract interpretation that can be of independent interest.

• We give a rigorous theoretical analysis that establishes
the (probabilistic) soundness of CAROL.

• We give an empirical evaluation that establishes CAROL
as a new state of the art for certifiably robust RL.

2. Background
Markov Decision Processes (MDPs). We start with the
standard definition of an Markov Decision Process (MDP)
M = (S,A, r, P,S0), where S is a set of states, A is a set
of actions, S0 is a distribution of initial states, P (s′ | s, a)
for s, s′ ∈ S and a ∈ A is a probabilistic transition func-
tion, and r(s, a) for s ∈ S, a ∈ A is a real-valued reward
function. Our method assumes an additional property that
is commonly satisfied in practice: that P (s′ | s, a) has
the form µP (s, a) + fP (s′), where fP (s′) is a distribution
independent of (s, a) and µP is deterministic.

A policy inM is a distribution π(a | s) with s ∈ S and a ∈
A. A (finite) trajectory τ is a sequence s0, a0, s1, a1, . . .
such that s0 ∼ S0, each ai ∼ π(si), and each si+1 ∼ P (s′ |
si, ai). We denote by R(τ) =

∑
i r(si, ai) the aggregate

(undiscounted) reward along a trajectory τ , and by R(π) the
expected reward of trajectories unrolled under π.

State-Adversarial MDPs. We model adversarial dynam-
ics using state-adversarial MDPs (Zhang et al., 2020).
Such a structure is a pair Mν = (M, B), where M =
(S,A, r, P,S0) is an MDP, and B : S → 2S is a perturba-
tion map.

Suppose we have a policy π in the underlying MDPM. In
an attack scenario, an adversary ν perturbs the observations
of the agent at a state s. As a result, rather than choosing
an action from π(a | s), the agent now chooses an action
from π(a | ν(s)). However, the environment transition is
still sampled from P (s′ | s, a) and not P (s′ | ν(s), a), as
the ground-truth state does not change under the attack. We
denote by π ◦ ν the state-action mapping that results when
π is used under this attack scenario.

Naturally, if ν can arbitrarily perturb states, then adversar-
ially robust learning is intractable. Consequently, we con-
strain ν using B, requiring ν(s) ∈ B(s) for all s ∈ S.
We denote the set of allowable adversaries in Mν as

AB = {ν : S → S | ∀s ∈ S. ν(s) ∈ B(s)}.

Abstract Interpretation. We certify adversarial robust-
ness using abstract interpretation (Cousot & Cousot, 1977),
a classic framework for worst-case safety analysis of sys-
tems. Here, one represents sets of system states using sym-
bolic representations (abstract states) in a predefined lan-
guage. For example, we can set our abstract states to be
hyperintervals that maintain upper and lower bounds in each
dimension of the state space. We denote abstract values with
the superscript #, and we use brackets J·K# to indicate that
we are using abstract semantics. For a set of concrete states
S, α(S) denotes the smallest abstract state which contains
S. For an abstract state s#, we denote by β(s#) the set of
concrete states represented by s#.

The core of abstract interpretation is the propagation of
abstract states s# through a function f(s) that captures
single-step system dynamics. This function can be repre-
sented in a variety of ways, including neural networks (Gehr
et al., 2018). For propagation, we assume that we have ac-
cess to a map f#(s#) that “lifts” f to abstract states. This
function must satisfy the property β(f#(s#)) ⊇ {f(s) :
s ∈ β(s#)}. Intuitively, f# overapproximates the behavior
of f : while the abstract state f#(s#) may include some
states that are not actually reachable through the application
of f to states encoded by s#, it will at least include every
state that is reachable this way.

By starting with an abstraction s#
0 of the initial states and

using abstract interpretation to propagate this abstract state
through the transition function f , we can obtain an abstract
state s#

i which includes all states of the system that are
reachable in i steps, for increasing i. The sequence of ab-
stract states τ# = s#

0 s
#
1 s

#
2 . . . is called an abstract trace.

3. Problem Formulation
To formulate our problem, we first need to define robustness.
Assume a fixed adversarial MDP Mν , a policy π, and a
robustness threshold ∆ > 0. A robustness property is a
constraint φ(π,∆) of the form

∀ν ∈ AB . R(π)−R(π ◦ ν) < ∆. (1)

Intuitively, φ requires that no allowable adversary can re-
duce the expected reward of the policy by more than ∆.

Our goal in this paper is to learn policies that are not just
robust but provably so. Accordingly, we expect our learning
algorithm to produce, in addition to a policy π, a certificate,
or proof, c of robustness.

Formally, let Π be the universe of all policies in a given
state-adversarial MDPMν = (M, B). For a policy π and
a robustness property φ, we write π `c φ if π provably
satisfies φ, and c is a proof of this fact.

Policy Optimization with Robustness Certificates

s0 = 1 ν(s) = 〈s0 + ε0, s1 + ε1〉 s0 sobs0 a0 s1 sobs1 a1 R(π ◦ ν) Eτ∼π◦ν [R]

No-Adv ε0 = ε1 = 0.0 1 1 1 2 + e ∼ N (0, 1) 2 + e 2 + e 6 + 2e 6
Adv-1 ε0 = 0.1, ε1 = −0.4 1 1.1 1.1 2.1 + e ∼ N (0, 1) 1.7 + e 1.7 + e 5.9 + 2e 5.9
Adv-2 ε0 = −0.2, ε1 = −0.3 1 0.8 0.8 1.8 + e ∼ N (0, 1) 1.5 + e 1.5 + e 5.1 + 2e 5.1

Reward Bound (R#) εt ∈ [−0.5, 0.5], ε#t = [−0.5, 0.5] 1 1 + [−0.5, 0.5] [0.5, 1.5] [1.5, 2.5] + e ∼ N (0, 1) [1, 3] + e [1 + e, 3 + e] [4 + 2e, 8 + 2e] [4, 8]

Table 1: Example of reward bound calculation. The MDP in this example has initial state set S0 = {1}, white-box transition
function P (s′|s, a) = s+ a+N (0, 1), reward function r(s, a) = s+ a, and adversary ν(s) ∈ [s− 0.5, s+ 0.5]. εt denotes
the disturbance added on step t. We aim to certify over the worst-case accumulative reward of a deterministic policy π
defined as π(s) = s. We define the worst-case here by considering all potential adversaries while still considering the
expected behavior over the stochastic environment, P . As shown in the above table, we first demonstrate three traces from
fixed adversaries. In the last row, we demonstrate the way how we consider all the adversary behaviors through an abstract
trace via abstract interpretation with intervals. The worst-case accumulative reward in this example is 4 as EN [e] = 0. The
abstract trace over all the adversaries in the last row is our certificate which serves as a proof that the policy satisfies our
property. We want to ensure the lower bound of the R# should not be lower than a threshold. In training, we use the abstract
trace to compute a loss to guide the policy optimization process.

The problem of policy optimization with robustness certifi-
cates is now defined as:

(π∗, c) = arg max
π∈Π

E
τ∼(M,π)

[R(τ)]

s.t. π∗ `c φ. (2)

That is, we want to find a policy that maximizes the standard
expected reward of the policy, but also ensures that the
expected worst-case reward under adversarial dynamics is
provably above a threshold.

Our certificates can be constructed using a variety of sym-
bolic or statistical techniques. In CAROL, certificates are
constructed using an abstract interpreter. Suppose we have
a policy π and an abstract trace τ# = s#

0 s
#
1 . . . s#

n such
that for all length-n trajectories τ = s0 . . . sn and all i,
si ∈ β(s#

i). The abstract trace allows us to compute a
lower bound on the expected reward for π and also serves
as a proof of this bound. We give an example of such certi-
fication in a simple state-adversarial MDP, assumed to be
available in white-box form, in Table 1.

A challenge here is that abstract interpretation requires a
white-box transition function, which is not available in RL.
We overcome this challenge by learning a model of the
environment during exploration. Model learning is a source
of error, so our certificates are probabilistically sound, i.e.,
they guarantee robustness with high probability. However,
this error only depends on the underlying model-based RL
algorithm and does not restrict the adversary.

4. Learning Algorithm
Now we present the CAROL framework. The framework
(Figure 1) has two key components: a model-based learner
and an abstract interpreter. During each training round, the
learner maintains a model of the environment dynamics
and a policy. These are sent to the abstract interpreter,
which calculates a lower bound on the abstract reward. The

Environment

Model

Policy

Model#

Policy#

Loss

Robustness Property

Learner
Abstract
Interpreter

Certificate

Figure 1: Schematic of CAROL

lower bound is used to compute a differentiable loss that
the learner uses in the next iteration of policy optimization.
At convergence, the abstract trace computed during abstract
interpretation is returned as a certificate of robustness.

Abstract Interpretation in CAROL. Now we describe the
abstract interpreter in CAROL in more detail. Recall that our
definition of robustness compares the expected reward of the
original policy to the expected reward of the policy under an
adversarial perturbation. As a result, our verifier is designed
to reason about the worst-case reward under adversarial
perturbations, while considering average-case behavior for
stochastic policies and environments. Algorithm 1 finds
a lower bound on this worst-case expected reward using
abstract interpretation to overapproximate the adversary’s
possible behaviors along with sampling to approximate the
average-case behavior of the policy and environment. We
denote this lower bound from Algorithm 1 as worst-case ac-
cumulative reward (WCAR), which is also used to measure
the certified performance in our evaluation.

In more detail, Algorithm 1 proceeds by sampling a starting
state s0 ∼ S0. Then in Algorithm 2 for each time step, we
find an overapproximation s#

obsi which includes all of the
possible ways the adversary may perturb si. Based on this
approximation, we sample a new approximation from the
policy π. Intuitively, this may be done by using a policy π
whose randomness does not depend on the current state of

Policy Optimization with Robustness Certificates

Algorithm 1 Worst-Case Accumulative Reward (WCAR)

1: Input: policy π, model E
2: Output: worst case reward of π under any adversary
3: for t from 1 to N do
4: Sample an initial state s0 ∼ S0

5: Get the worst case reward Rmint using Algorithm 2 over horizon T starting from s0

6: end for
7: return 1

N

∑N
t=1Rmint

Algorithm 2 Worst-case rollout under adversarial perturbation

1: Input: Initial state s0, rollout horizon T
2: Output: Worst-case reward of π starting from s0 over one random trajectory
3: Abstract the initial state and reward: soriginal

#
0 ← α({s0}), R#

mint i
← α ({0})

4: for i from 1 to T do
5: Abstract over possible perturbations: s#

obsi ←
r
B(s#

originali
)
z#

6: Calculate symbolic predicted actions: a#
i ←

r
π(s#

obsi)
z#

7: Calculate symbolic next-step states and rewards: s#
originali+1

, r#
i ←

r
Eθ(s

#
originali

, a#
i) + α({x | ‖x‖ ≤ εE})

z#

8: Update worst-case reward: R#
mint ←

r
R#

mint + r#
i

z#

9: end for
10: return inf β(R#

mint)

the system. More formally, π(a | s) = µπ(s)+fπ(a) where
fπ(a) is a distribution with zero mean which is independent
of s. Then a#

i may be computed as Jµπ(s#
obsi) + α({e})K#

where e ∼ fπ(a). Once the abstract action is computed,
we may find the new (abstract) state and reward using the
environment model E. The model is assumed to satisfy a
PAC-style bound, i.e., there exist δE and εE such that with
probability at least 1− δE , ‖E(s, a)−P (s, a)‖ ≤ εE . The
values of δE and εE can be measured at model construction.

One way to understand Algorithm 1 is to consider pairs
of abstract and concrete trajectories in which the random-
ness is resolved in the same way. Specifically, if π(a |
s) = µπ(s) + fπ(a) and E(s′ | s, a) = µ(s, a) + fE(s′),
the initial state s0 combined with the sequence of values
ei ∼ fπ(a) and e′i ∼ fE(s′) for 0 ≤ i ≤ T uniquely de-
termine a trajectory. For a given set of values, the reward
bound inf β(R#

mint) represents the worst-case reward under
any adversary for a particular resolution of the randomness
in the environment and the policy. The outer loop of Algo-
rithm 1 approximates the expectation over these different
random values by sampling. Theorem 1 in Section 5 shows
formally that with high probability, Algorithm 1 gives a
lower bound on the true adversarial reward.

Learning in CAROL Now we discuss how to learn a pol-
icy and environment model which may be proven robust by
Algorithm 1. At a high level, Algorithm 3 works by intro-
ducing a symbolic loss term Lsymbolic

ψ which measures the

robustness of the policy. Because robustness is a constrained
optimization problem, we use this symbolic loss together
with a Lagrange multiplier in an alternating gradient descent
scheme to find the optimal robust policy. Formally, for a
given environment model E, the inner loop in Algorithm 3
solves the optimization problem

arg min
ψ

Lnormal(πψ,Dmodel) s.t. Lsymbolic(π,E) ≤ ∆

via the Lagrangian

arg min
ψ

max
λ≥0

Lnormal(πψ,Dmodel)+λ(Lsymbolic(π,E)−∆).

We ensure that solving this problem solves the certifi-
able robustness problem by enforcing the following con-
ditions: (i) E accurately models the environment and (ii)
Lsymbolic(π,E) measures the “provable robustness” of π.
Condition (i) is handled by alternating model updates with
policy updates, in the style of Dyna (Sutton, 1990), so we
will focus on condition (ii).

The computation of Lsymbolic uses the same underlying ab-
stract rollouts (Algorithm 2) as the verifier described in
Algorithm 1. Once again, this algorithm estimates the re-
ward achieved by a policy under worst-case adversarial
perturbations but average-case policy actions and environ-
ment transitions. We then define the robustness loss as the
difference between the nominal loss Ro and the provable
lower bound on the worst-case loss Rmin. Now as long as

Policy Optimization with Robustness Certificates

Algorithm 3 Policy Optimization for Certifiably Robust Reinforcement Learning

1: Initialize a random policy πψ , random environment model Eθ, and empty model dataset Dmodel.
2: Initialize an environment dataset Denv by unrolling trajectories under a random policy.
3: for N epochs do
4: Train model Eθ on Denv via maximum likelihood
5: Unroll M trajectories int he model under πψ; add to Dmodel
6: Take action in environment according to πψ; add to Denv
7: for G gradient updates do
8: Calculate normal policy loss Lnormal(πψ,Dmodel) as in MBPO (Janner et al., 2019)
9: Sample 〈st, at, st+1, rt〉 uniformly from Dmodel

10: Rollout π starting from st under Eθ for Ttrain steps and compute the total reward Ro

11: Compute the worst-case reward Rmin using Algorithm 2 over horizon Ttrain.
12: Compute the robustness loss Lsymbolic(πψ, Eθ)← Ro −Rmin
13: Update policy parameters: ψ ← ψ − α∇ψ(Lnormal(πψ,Dmodel) + λ(Lsymbolic(πψ, Eθ)−∆))
14: Update Lagrange multiplier: λ← max(0, λ+ α′(Lsymbolic(πψ, Eθ)−∆))
15: end for
16: Unroll n trajectories in the true environment under πψ; add to Denv
17: end for

Lsymbolic < ∆, we satisfy the definition of robustness given
in Section 3 for that specific trace. Repeating these gra-
dient updates gives an approximation of the average-case
behavior which is considered in Algorithm 1.

5. Theoretical Analysis
In this section, we explore some key theoretical properties
of CAROL. Proofs are deferred to Appendix B.

Theorem 1. Assume the environment transition distribution
is P (s′ | s, a) = N (µP (s, a),ΣP) and the environment
model is E(s′ | s, a) = N (µE(s, a),ΣE) with ΣP ,ΣE

diagonal. Further, we assume that the model satisfies a
PAC-style guarantee: for any state s, action a, and ε ∈ S,
|(µP (s, a) + Σ

1/2
P ε) − (µE(s, a) + Σ

1/2
E ε)| ≤ εE with

probability at least 1−δE . For any policy π, let the result of
Algorithm 1 be R̂# and let the reward of π under the optimal
adversary ν∗ be R. Then for any δ > 0 with probability at
least 1− δ, we have

R ≥R̂# − 1√
δ

√
Var [R#]

N
−
(

1− (1− δE)
T
)
C.

where C is a constant (see Appendix B for details of C).

Theorem 1 shows that our checker is a valid (probabilistic)
proof strategy for determining if a policy is robust. That
is, if we use Algorithm 1 to measure the reward of a policy
under perturbation, the result is a lower bound of the true
worst-case reward (minus a constant) with high probability,
assuming an accurate environment model. The bound in
Theorem 1 gives some interesting insights. First, the bound
grows as δ shrinks, so as we consider higher confidence
levels, we pay the price of a looser bound. Second, the

bound depends on the variance of the abstract reward and
the number of samples in an intuitive way — higher vari-
ance makes it harder to measure the true reward, and more
samples makes the bound tighter. Third, as δE increases,
the last term of the bound grows, indicating that a less ac-
curate environment model leads to a looser bound. Finally,
the bound grows with T , indicating that over longer time
horizons, our reward measurement gets less accurate. This
is consistent with the intuition that the environment model
may drift away from the true environment over long rollouts.

Theorem 2. Algorithm 3 converges to a policy π which is
robust and verifiable by Algorithm 1.

Intuitively, the theorem shows that Algorithm 3 solves the
certifiable robustness problem, i.e., it converges to a pol-
icy which passes the check by Algorithm 1. The proof is
straightforward because Algorithm 3 is a standard primal-
dual approach to solve the constrained optimization problem
outlined in Equation 2 (Nandwani et al., 2019).

6. Evaluation
We study the following experimental questions:

RQ1: Can CAROL learn policies with nontrivial certified
reward bounds?

RQ2: How does CAROL compare with other (non-certified)
robust RL methods in terms of certified bounds?

RQ3: How does CAROL compare with other robust RL
methods in terms of empirical adversarial performance?

RQ4: How does CAROL’s model-based training approach
affect performance?

Environments and Setup. Our experiments consider l∞-

Policy Optimization with Robustness Certificates

Figure 2: Certified performance of policies π with the learned-together model, E. Each bar is an average of 20 starting
states. nan denotes not a number, which means that (π,E) is not certifiable by a third-party verifier (Zhang et al., 2018). A
higher value indicates a better certified worst-case performance.

Figure 3: Certified performance of policies π under a set of separately learned models, {Ei}. Each bar averages the learned
policies on each Ei of 20 starting states.

norms perturbation of the state with radius ε: Bp(s, ε) :=
{s′|‖s′ − s‖ ≤ ε}. We implement CAROL on top of the
MBPO (Janner et al., 2019) model-based RL algorithm
using the implementation from Pineda et al. (2021). For
training, we use IBP (Gowal et al., 2018) as a scalable
abstract interpretation mechanism. During the evaluation,
we use CROWN (Zhang et al., 2018), which is a more
expensive but accurate bound propagation method. We use
a ε-schedule (Gowal et al., 2018; Zhang et al., 2020) during
training to slowly increase the εt at each epoch within the
perturbation budget until reaching ε. Note that the policies
take action stochastically during training, but we set them
to be deterministic during evaluation.

We experiment on four MuJoCo environments in OpenAI
Gym (Brockman et al., 2016). For CAROL, we use the
same hyperparameters as in Pineda et al. (2021) without
further tuning. Specifically, we do not use an ensemble of
dynamics models. Instead, we use a single dynamic model,
which is the case when the ensemble is of size 1. We use
Gaussian distribution as the independent noise distribution,
fπ(a), fE(s′) for both policy and model in the experiments.
Concretely, the output of our policies are the parameters
µπ, Σπ of a Gaussian, with Σπ being diagonal and inde-
pendent of input state s. For the model, the output are the
parameters µE , ΣE of a Gaussian, with ΣE being diagonal
and independent of input s, a. In the implementation, we
approximate the εE as zero when measuring the certified

performance for all experiments.

We run Hopper 5 × 105 steps, Walker2d 7.5 × 105 steps,
Halfcheetah 8.5 × 105 steps, and Ant 9 × 105 steps for
convergence. CAROL has a regularization parameter, λ, for
regularizing the robust loss Lsymbolic, which we set to 1.0,
1.0, 0.5, 0.1 for Hopper, Walker2d, HalfCheetah, and Ant,
respectively. We set Ttrain = 1 for all the training of CAROL.

We compare CAROL with the following methods: (1) MBPO
(Janner et al., 2019), our base algorithm for policy optimiza-
tion. (2) SA-PPO (Zhang et al., 2020), a robust RL algo-
rithm bounding per-step action distance. (3) RADIAL-PPO
(Oikarinen et al., 2021), a robust RL algorithm using lower
bound PPO loss to update the policy. (4) CAROL-Separate
Sampler(CAROL-SS), an ablation of CAROL. In CAROL, we
update the policy loss Lnormal with the data sampled from the
rollout between the learned model and the policy. While in
CAROL-SS, the data for Lnormal is sampled from the rollout
between the environment and the policy. The εtrain is 0.075,
0.05, 0.075, 0.05 for Hopper, Walker2d, HalfCheetah, and
Ant for CAROL, CAROL-SS, SA-PPO, and RADIAL-PPO
in this section. More details of the training and setup are
available in Appendix C.

Evaluation. We evaluate the performance of policies with
two metrics: (i). WCAR following Algorithm 1 for certified
performance. (ii). total reward under MAD attacks (Zhang
et al., 2020) for empirical performance.

Policy Optimization with Robustness Certificates

Figure 4: Training Curves of CAROL and CAROL-SS. The solid lines in the graph show the average natural rewards of five
training trials, and the shaded areas represent the standard deviation among those trials.

RQ1: Certified Performance with Learned-together
Certificate. After training, we get a policy, π, and an
environment model, E, trained with the policy. Then, we
evaluate the WCAR following Algorithm 1 with π and E.
Note that we use an εtest = 1

255 for the evaluation of prov-
ability as certifying over traces of neural network models
accurately is a challenging task for abstract interpreters due
to accumulated approximation error. The proof becomes
more challenging as the horizon increases as the impact from
each step’s worst-case adversary accumulates. We vary the
certified horizon under the εtest to exhibit the certified perfor-
mance. To have a fair comparison across different horizons,
we quantify the certified performance by WCAR/T .

Figure 2 exhibits the certified performance of CAROL. Both
CAROL and MBPO are evaluated with the model trained
together. We are able to train a policy with better certified
accumulative reward under the worst attacks compared to
the base algorithm, MBPO, which does not use the regular-
ization Lsymbolic. As the time horizon increases, it becomes
harder to certify the accumulative reward. For example, in
Ant and HalfCheetah, CAROL is not able to give a good
certified performance when the horizon reaches 10 and 20
respectively because of the accumulative influence from
the worst-case attack and the overapproximation from the
abstract interpreter. We also highlight that Ant is a challeng-
ing task for certification due to the high-dimensional state
space.

RQ2: Comparison of Certified Performance with Other
Methods. We compare CAROL with two robust RL meth-
ods, SA-PPO (Zhang et al., 2020) and RADIAL-PPO
(Oikarinen et al., 2021), which both bound the per-step per-
formance of the policy during training. SA-PPO bounds the
per-step action deviation under perturbation, and RADIAL-
PPO bounds the one-step loss under perturbation. To have
a fair comparison of the certified performance of policies
and avoid model error bias, we separately train 5 additional
environment models, {Ei}, with the trajectory datasets un-
rolled from 5 additional policies (with regular RL training)
and the environment. We truncate CAROL by extracting the
policies from training and certify them with these separately

Nominal Attack (MAD)
Environment Model ε = 0 ε = εtrain

Hopper
(εtrain = 0.075)

MBPO 3246.0±76.1 2874.2±203.4
SA-PPO 3423.9±164.2 3213.8±284.8
RADIAL-PPO 3547.0±166.9 3100.3±368.3

CAROL 3290.1±104.9 3201.4±100.5

Ant
(εtrain = 0.05)

MBPO 4051.9±526.2 406.2±83.5
SA-PPO 5368.8±96.4 5327.4±112.7
RADIAL-PPO 4694.1±219.5 4478.9±232.8

CAROL 5696.6±277.9 5362.2±242.8

HalfCheetah
(εtrain = 0.075)

MBPO 7706.3±710.1 2314.6±566.7
SA-PPO 3193.9±650.7 3231.6±659.9
RADIAL-PPO 3686.5±439.2 3409.6±683.9

CAROL 5821.5±2401.9 3961.6±899.5

Walker2d
(εtrain = 0.05)

MBPO 3815.6±211.9 3616.5±228.2
SA-PPO 4271.7±222.2 4444.4±286.0
RADIAL-PPO 2935.1±272.1 3022.6±381.7

CAROL 3784.4±329.1 3774.3±260.3

Table 2: Average episodic reward ± standard deviation over
100 episodes on three baselines and CAROL. We show natu-
ral rewards (under no attack) and rewards under adversarial
attacks. The best results over all methods are in bold.

trained environment models. This setting is not completely
inline with CAROL’s learned certificate and verification (see
RQ1) but is designed for a fair comparison across policies.

As shown in Figure 3, the CAROL’s certified performance
with separately trained models is slightly worse yet compa-
rable to its performance when using learned-together cer-
tificates. When compared with non-certified RL policies,
CAROL consistently exhibits better certifiable performance.
It is worth noting that CAROL is able to provide increas-
ing worst-case rewards over time for the Hopper, Ant, and
HalfCheetah, which aligns with the reward mechanisms
used in these environments. Thus, we believe these results
demonstrate that CAROL is able to give a reasonable certi-
fied performance, while the other methods, which are not
specifically designed for worst-case accumulative reward
certification, struggle to achieve the same goal.

RQ3: Comparison of Empirical Performance with

Policy Optimization with Robustness Certificates

Other Methods. Usually, there is a trade-off between
certified robustness and empirical robustness. One can get
good provability but may sacrifice empirical rewards. We
show that policy from our algorithm shows comparable
natural rewards (without attack) and adversarial rewards
compared with other methods. In Table 2, we show results
on 4 environments and comparison with MBPO, SA-PPO,
and RADIAL-PPO. The policies are the same ones evalu-
ated for RQ1 and RQ2. For each environment, we compare
the performance under MAD attacks (Zhang et al., 2020).
CAROL outperforms other methods on Ant and HalfCheetah
under attack when the base algorithm, MBPO, is extremely
not robust. For Hopper, CAROL has comparable adversarial
rewards with the best methods. CAROL’s reward is worse
on Walker2d though still reasonable.

RQ4: Impact of Model-Based Training. In this part, we
investigate the impact of our design choices for Lnormal on
performance. We compare our framework, CAROL, with an
ablation of it, CAROL-SS, to understand how rollout with the
learned model for Lnormal matters in CAROL. We present a
comparison of performance during training, as shown in Fig-
ure 4. In the implementation, we set a smoother ε-schedule
for CAROL-SS by allowing CAROL-SS to take longer steps
from ε = 0 to the target ε. These results show that CAROL
converges much faster while achieving a comparable or
better final performance due to the benefits of the sample
efficiency of MBRL. Additionally, the consistency between
the rollout datasets for Lnormal and the ones for Lsymbolic also
leads to a better natural reward at convergence in training.

7. Related Work
Adversarial RL. Adversarial attacks on RL systems have
been extensively studied. Specific attacks that have been
investigated include adversarial perturbations on agents’ ob-
servations or actions (Huang et al., 2017; Lin et al., 2017;
Weng et al., 2019), adversarial disturbance forces to the
system (Pinto et al., 2017), and other adversarial policies
in a multiagent setting (Gleave et al., 2019). Most recently,
Zhang et al. (2021) and Sun et al. (2021) propose methods
to train agents together with a learned optimal adversary in
an online way to achieve better adversarial reward. These
efforts are orthogonal to existing regularization-based tech-
niques (including ours).

Robust RL and Provable Robustness in RL. Multiple
robust training methods have been applied to deep RL. Fis-
cher et al. (2019) leverage additional student networks to
help the robust Q learning, and Everett et al. (2021) enhance
an agent’s robustness during testing time by computing the
lower bound of each action’s Q value at each step. Zhang
et al. (2020) and Oikarinen et al. (2021) leverage a bound
propagation technique in a loss regularizer to encourage the
agent to either follow its original actions or optimize over a

loss lower bound. While these efforts achieve robustness by
deterministic certification techniques for neural networks
(Gowal et al., 2018; Xu et al., 2020), they mainly focus on
the step-wise certification and are not able to give robustness
certification if the impact from attacks accumulates across
multiple steps. CAROL differs from these papers by offering
certified robustness for the aggregate reward in an episode.
We know of only two recent efforts that study robustness
certification for cumulative rewards (Wu et al., 2021; Kumar
et al., 2021). Of these, (Wu et al., 2021) is a framework
for certification rather than certified learning. (Kumar et al.,
2021) proposes a certified learning algorithm under the as-
sumption that the adversarial perturbation is smoothed using
random noise. The attack model here is weaker than the
adversarial model assumed by CAROL and most other work
on adversarial learning.

Certified RL. Safe control with learned certificates is an
active field (Dawson et al., 2022). A few efforts in this space
have considered controllers discovered through RL. Many
works use a given certificate with strong control-theoretic
priors to constrain the actions of an RL agent (Cheng et al.,
2019a; Li & Belta, 2019; Cheng et al., 2019b) or assume the
full knowledge of the environment to yield the certificate
during the training of an agent (Yang & Chaudhuri, 2021).
Chow et al. (2019) and Chow et al. (2018) attempt to derive
certificates from the structure of the constrained Markov
decision process (Altman, 1999) for the safe control prob-
lems. Chang & Gao (2021) incorporate Lyapunov methods
in deep RL to learn a neural Lyapunov critic function to im-
prove the stability of an RL agent. We differ from this work
by focusing on adversarial robustness rather than stability.

8. Conclusion and Future Work
We have presented CAROL, the first RL framework with cer-
tifiable episode-level robustness guarantees. Our approach
is based on a new combination of model-based RL and ab-
stract interpretation. We have given a theoretical analysis to
justify the approach and also validated it empirically in four
challenging continuous control tasks.

A key challenge in CAROL is that our abstract interpreter
may not be sufficiently precise, and attempts to increase pre-
cision may compromise scalability. Future research should
work to address this issue with more accurate and scalable
verification techniques. Also, as seen in Figure 4, there is
variance in the results due to the use of a single dynamics
model. To address this issue, future work should explore
ways to incorporate certificates across ensembles of models.
Finally, because abstract interpretation of probabilistic sys-
tems is difficult, our approach assumes that the randomness
in the environment transitions is state-independent. Future
work should try to eliminate this assumption through ab-
stract interpreters tailored to probabilistic systems.

Policy Optimization with Robustness Certificates

References
Altman, E. Constrained Markov decision processes:

stochastic modeling. Routledge, 1999.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chang, Y.-C. and Gao, S. Stabilizing neural control using
self-learned almost lyapunov critics. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 1803–1809. IEEE, 2021.

Cheng, R., Orosz, G., Murray, R. M., and Burdick, J. W.
End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 3387–3395, 2019a.

Cheng, R., Verma, A., Orosz, G., Chaudhuri, S., Yue, Y., and
Burdick, J. Control regularization for reduced variance
reinforcement learning. In International Conference on
Machine Learning, pp. 1141–1150. PMLR, 2019b.

Chow, Y., Nachum, O., Duenez-Guzman, E., and
Ghavamzadeh, M. A lyapunov-based approach to safe
reinforcement learning. Advances in neural information
processing systems, 31, 2018.

Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E.,
and Ghavamzadeh, M. Lyapunov-based safe policy
optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adver-
sarial robustness via randomized smoothing. In Interna-
tional Conference on Machine Learning, pp. 1310–1320.
PMLR, 2019.

Cousot, P. and Cousot, R. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pp. 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

Dawson, C., Gao, S., and Fan, C. Safe control with learned
certificates: A survey of neural lyapunov, barrier, and
contraction methods. arXiv preprint arXiv:2202.11762,
2022.

Everett, M., Lütjens, B., and How, J. P. Certifiable robust-
ness to adversarial state uncertainty in deep reinforcement
learning. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

Fischer, M., Mirman, M., Stalder, S., and Vechev, M. Online
robustness training for deep reinforcement learning. arXiv
preprint arXiv:1911.00887, 2019.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In 2018 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2018.

Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S.,
and Russell, S. Adversarial policies: Attacking deep
reinforcement learning. arXiv preprint arXiv:1905.10615,
2019.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli,
P. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint
arXiv:1810.12715, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
arXiv preprint arXiv:1702.02284, 2017.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Kumar, A., Levine, A., and Feizi, S. Policy smoothing for
provably robust reinforcement learning. In International
Conference on Learning Representations, 2021.

Li, X. and Belta, C. Temporal logic guided safe reinforce-
ment learning using control barrier functions. arXiv
preprint arXiv:1903.09885, 2019.

Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu,
M.-Y., and Sun, M. Tactics of adversarial attack on
deep reinforcement learning agents. arXiv preprint
arXiv:1703.06748, 2017.

Lütjens, B., Everett, M., and How, J. P. Certified adversarial
robustness for deep reinforcement learning. In Confer-
ence on Robot Learning, pp. 1328–1337. PMLR, 2020.

Mirman, M., Gehr, T., and Vechev, M. Differentiable ab-
stract interpretation for provably robust neural networks.
In International Conference on Machine Learning, pp.
3578–3586. PMLR, 2018.

Policy Optimization with Robustness Certificates

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nandwani, Y., Pathak, A., Mausam, and Singla, P.
A primal dual formulation for deep learning with
constraints. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
cf708fc1decf0337aded484f8f4519ae-Paper.
pdf.

Oikarinen, T., Zhang, W., Megretski, A., Daniel, L., and
Weng, T.-W. Robust deep reinforcement learning through
adversarial loss. Advances in Neural Information Pro-
cessing Systems, 34:26156–26167, 2021.

Pineda, L., Amos, B., Zhang, A., Lambert, N. O., and
Calandra, R. Mbrl-lib: A modular library for model-
based reinforcement learning. Arxiv, 2021. URL https:
//arxiv.org/abs/2104.10159.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A.
Robust adversarial reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2817–2826.
PMLR, 2017.

Polydoros, A. S. and Nalpantidis, L. Survey of model-
based reinforcement learning: Applications on robotics.
Journal of Intelligent & Robotic Systems, 86(2):153–173,
2017.

Russo, A. and Proutiere, A. Optimal attacks on reinforce-
ment learning policies. arXiv preprint arXiv:1907.13548,
2019.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. Deep
reinforcement learning framework for autonomous driv-
ing. Electronic Imaging, 2017(19):70–76, 2017.

Sun, Y., Zheng, R., Liang, Y., and Huang, F. Who is the
strongest enemy? towards optimal and efficient evasion
attacks in deep rl. arXiv preprint arXiv:2106.05087,
2021.

Sutton, R. S. Integrated architecture for learning, planning,
and reacting based on approximating dynamic program-
ming. In Proceedings of the Seventh International Con-
ference (1990) on Machine Learning, pp. 216–224, San
Francisco, CA, USA, 1990. Morgan Kaufmann Publish-
ers Inc. ISBN 1558601414.

Weng, T.-W., Dvijotham, K. D., Uesato, J., Xiao, K., Gowal,
S., Stanforth, R., and Kohli, P. Toward evaluating ro-
bustness of deep reinforcement learning with continuous
control. In International Conference on Learning Repre-
sentations, 2019.

Wong, E. and Kolter, Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In International Conference on Machine Learning, pp.
5286–5295. PMLR, 2018.

Wu, F., Li, L., Huang, Z., Vorobeychik, Y., Zhao, D., and
Li, B. Crop: Certifying robust policies for reinforcement
learning through functional smoothing. In International
Conference on Learning Representations, 2021.

Xu, K., Shi, Z., Zhang, H., Huang, M., Chang, K.,
Kailkhura, B., Lin, X., and Hsieh, C. Automatic per-
turbation analysis on general computational graphs. Tech-
nical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2020.

Yang, C. and Chaudhuri, S. Safe neurosymbolic learning
with differentiable symbolic execution. In International
Conference on Learning Representations, 2021.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. Advances in neural
information processing systems, 31, 2018.

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning,
D., and Hsieh, C.-J. Robust deep reinforcement learning
against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:
21024–21037, 2020.

Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. Robust
reinforcement learning on state observations with learned
optimal adversary. arXiv preprint arXiv:2101.08452,
2021.

https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159

Policy Optimization with Robustness Certificates

A. Symbols
We give a summary of the symbols used in this paper below.

Definition Symbol/Notation

Policy πψ, π
Model of the environment Eθ, E

Environment transition P
Parameters (mean, covariance) for Gaussian distribution for environment, model, and policy µP ,ΣP , µE ,ΣE , µπ,Σπ

Distribution representing noise for environment, model, and policy fP , fE , fπ
Adversary ν

Regular policy loss Lnormal

Robustness loss Lsymbolic

Lipschitz constants for the environment model and policy mean LE , LP
Model error εE

PAC bound probability δE

Abstract values and semantics ·#, J·K#

Abstraction α
Concretization β

Horizon for training and testing T , Ttrain, Ttest
Disturbance for training and testing ε, εtrain, εtest

B. Proofs
In this section we present proofs of the theorems from Section 5.

Assumption 3. The horizon of the MDP is bounded by T .

Assumption 4. The environment transition distribution has the form P (s′ | s, a) = N (µP (s, a) ,ΣP) with ΣP diagonal
and the environment model E has the form E (s′ | s, a) = N (µE(s, a),ΣE) with ΣE diagonal.

Assumption 5. There exist values εE and δE such that for all s, a and for any fixed e with probability at least
1 − δE ,

∥∥∥(µP (s, a) + Σ
1/2
P e

)
−
(
µE (s, a) + Σ

1/2
E e

)∥∥∥ ≤ εE . Further, there exists some dE such that for all s, a,∥∥∥(µP (s, a) + Σ
1/2
P e

)
−
(
µE (s, a) + Σ

1/2
E e

)∥∥∥ ≤ dE .

Assumption 6. The environment model mean function µE (s, a) is LE-Lipschitz continuous, the immediate reward function
r (s, a) is Lr-Lipschitz continuous, and the policy mean µπ (s) is Lπ-Lipschitz continuous.

Assumption 7. For all s ∈ S, we have s ∈ B (s). That is, the adversary may choose not to perturb any state.

Theorem 1. For any policy π, let the result of Algorithm 1 be R̂#, let ν∗ be the optimal adversary (i.e., for all ν ∈ AB ,
R (π ◦ ν∗) ≤ R (π ◦ ν)), and let the reward of π ◦ ν∗ be R. Then for any δ > 0 with probability at least 1− δ, we have

E [R (τ)] ≥ R̂# (τ)− 1√
δ

√
Var [R# (τ)]

N
−
(

1− (1− δE)
T
)
Lr(1 + Lπ)dE

(LELπ)
T

+ (1− LELπ)T − 1

(1− LELπ)
2 .

Proof. Recall that the environment transition P and policy π are assumed to be separable, i.e., P (s′ | s, a) = µP (s, a) +
fP (s′) and π (a | s) = µπ (s) + fπ (a) with µP and µπ deterministic. As a result, a trajectory under policy π ◦ ν∗
may be written τ = s0, a0, s1, a1, . . . , sn, an where s0 ∼ S0, each ai = µπ (ν∗ (si)) + eπi for eπi ∼ fπ (a), and each
si = µP (si−1, ai−1) + ePi for ePi ∼ fP (s′). By Assumption 4, we know that ePi ∼ N (0,ΣP) so that ePi = Σ

1/2
P ei

where ei ∼ N (0, I). In particular, because each trajectory τ is uniquely determined by s0, {eπi }ni=0, {ei}ni=1, we can write
the reward of π ◦ ν∗ as

R (π ◦ ν∗) = E
s0∼S0,{eπi ∼fπ(a)}n

i=0
,{ei∼N (0,I)}ni=1

R (τ)

Because this expectation ranges over the values of s0, {eπi }
n
i=0 , {ei}

n
i=1, we will proceed by considering pairs of abstract

and concrete trajectories unrolled with the same starting state and noise terms.

Policy Optimization with Robustness Certificates

To do this, we analyze Algorithm 2 for some fixed s0, {eπi }
n
i=0 , {ei}

n
i=1. Let eEi = Σ

1/2
E ei. That is, given the same

underlying sample from N (0, I), ePi is the noise in the true environment while eEi is the noise in the modeled environment.

We show by induction that for all i, si ∈ β
(
s#

originali

)
with probability at least (1− δE)

i. Note that, because abstract

interpretation is sound, s0 ∈ β
(
s#

original0

)
. Additionally, for all i if si ∈ β

(
s#

originali

)
then ν∗ (si) ∈ β

(
s#

obsi

)
. Moreover,

since eπi is fixed, we have
r
π
(
s#

obsi

)z#

=
r
µπ

(
s#

obsi

)
+ eπi

z#

so that π (ν∗ (s)) ∈ β
(
a#
i

)
. Similarly, because eEi is fixed, let ∆E = α ({x | ‖x‖ ≤ εE}) and we have

r
E
(
s#

originali
, a#
i

)
+ ∆E

z#

=
r
µE

(
s#

originali
, a#
i

)
+ eEi + ∆E

z#

.

By the induction hypothesis, we know that si−1 ∈ β
(
s#

originali−1

)
with probability at least (1− δE)

i−1 and therefore ai−1 ∈

β
(
a#
i−1

)
. By Assumption 5, we have that

∥∥(µP (s, a) + ePi
)
−
(
µE (s, a) + eEi

)∥∥ < εE with probability at least 1− δE .

In particular,
(
µP (s, a) + εPi

)
−
(
µE (s, a) + εEi

)
∈ ∆E , so that µP (s, a) + ePi ∈ β

(r
E
(
s#

originali
, a#
i

)
+ ∆E

z#
)

.

Then with probability at least 1− δE , if si−1 ∈ β
(
s#

originali−1

)
then si ∈ β

(
s#

originali

)
. As a result, si ∈ β

(
s#

originali

)
with

probability at least (1− δE)
i. In particular, by Assumption 3, n ≤ T so that for a fixed τ defined by s0, {eπi }

n
i=0 , {ei}

n
i=1,

we have that with probability at least (1− δE)
T , Algorithm 2 returns a lower bound on R (τ).

Now we consider the case where Algorithm 2 does not return a lower bound of R (τ). In this case, we show (again by
induction) that for all 0 ≤ i ≤ T , there exists a point s′i ∈ β

(
s#

originali

)
such that

‖si − s′i‖ ≤
i−1∑
j=0

(LELπ)
j
dE = dE

(
1− (LELπ)

i−1

1− LELπ

)

(when
∑−1
j=0 (LELπ)

j
dE is taken to be zero). First, note that s0 ∈ β

(
s#

original0

)
, so the base case is trivially true. Now by

the induction hypothesis we have that there exists some s′i−1 ∈ β
(
s#

originali−1

)
with

∥∥si−1 − s′i−1

∥∥ ≤∑i−2
j=0 (LELπ)

j
dE .

Notice that by Assumption 7, we also have s′i−1 ∈ β
(
s#

obsi−1

)
. Now because abstract interpretation is sound, we have that

µπ
(
s′i−1

)
+eπi−1 ∈ β

(
a#
i−1

)
and by Assumption 6, ‖µπ (si−1)−µπ

(
s′i−1

)
‖ ≤ Lπ

∑i−2
j=0 (LELπ)

j
dE . Similarly, we have

µE
(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+eEi ∈ β

(
s#

originali

)
, and

∥∥µE (si−1, µπ (si−1) + eπi−1

)
− µE

(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)∥∥ ≤
LELπ

∑i−2
j=0 (LELπ)

j
dE . Let ŝi = µE

(
si−1, µπ (si−1) + επi−1

)
+ εEi . Then by Assumption 5, we have ‖ŝi − si‖ ≤

dE , so that in particular
∥∥si − µE (s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+ εEi

∥∥ ≤ dE + LELπ
∑i−2
j=0 (LELπ)

j
dE . Letting s′i =

µE
(
s′i−1, µπ

(
s′i−1

)
+ eπi−1

)
+ εPi , we have the desired result.

We use this result to bound the difference in reward between the abstract and concrete rollouts when Algorithm 2 does not
return a lower bound. For each i, because s′i ∈ β

(
s#

originali

)
and µπ (s′i) + eπi ∈ a

#
i , we define r′i = r (s′i, µπ (s′i) + eπi)

and we know that r′ ∈ r#
i . Because ‖si − s′i‖ ≤ dE

(
1−(LELπ)i−1

1−LELπ

)
we have ‖ai − a′i‖ ≤ LπdE

(
1−(LELπ)i−1

1−LELπ

)
and

|r (si, ai)− r′i| ≤ Lr(1 + Lπ)dE

(
1−(LELπ)i−1

1−LELπ

)
. In particular, let R′ =

∑
i r
′
i and then

|R (τ)−R′| ≤
T∑
i=1

Lr(1 + Lπ)dE

(
1− (LELπ)

i−1

1− LELπ

)
= Lr(1 + Lπ)dE

(LELπ)
T

+ (1− LELπ)T − 1

(1− LELπ)
2 .

We now combine these two cases to bound the expected difference between the reward returned by Algorithm 2, denoted
R# (τ), and the reward of τ . Let D = R# (τ) − R (τ) be a random variable representing this difference. Then with

Policy Optimization with Robustness Certificates

probability at least (1− δE)
T , D ≤ 0 and in all other cases (i.e., with probability no greater than 1 − (1− δE)

T),
D ≤ LR(1 + Lπ)dE

(LELπ)T+(1−LELπ)T−1

(1−LELπ)2
. In particular then,

E [D] ≤
(

1− (1− δE)
T
)
Lr(1 + Lπ)dE

(LELπ)
T

+ (1− LELπ)T − 1

(1− LELπ)
2 .

By definition E
[
R# (τ)

]
= E [R (τ)] + E [D]. Therefore, we have

E [R (τ)] = E
[
R# (τ)

]
−E [D] ≥ E

[
R# (τ)

]
−
(

1− (1− δE)
T
)
Lr(1 +Lπ)dE

(LELπ)
T

+ (1− LELπ)T − 1

(1− LELπ)
2 . (3)

Algorithm 3 approximates E
[
R# (τ)

]
by sampling N values. Let R̂# (τ) be the measured mean and recall E

[
R̂# (τ)

]
=

E
[
R# (τ)

]
and Var

[
R̂# (τ)

]
= Var

[
R# (τ)

]
/N . Then by Chebyshev’s inequality we have the for all k > 0,

Pr

[∣∣∣R̂# (τ)− E
[
R# (τ)

]∣∣∣ ≥ k√Var
[
R̂# (τ)

]]
≤ 1/k2. Then in particular, with probability at least 1− 1/k2,

R̂# (τ)− k
√

Var [R# (τ)]

N
≤ R# (τ) .

Combining this with Equation 3 above and letting k = 1/
√
δ, we have with probability at least 1− δ,

E [R (τ)] ≥ R̂# (τ)− 1√
δ

√
Var [R# (τ)]

N
−
(

1− (1− δE)
T
)
Lr(1 + Lπ)dE

(LELπ)
T

+ (1− LELπ)T − 1

(1− LELπ)
2 .

C. Implementation Details
C.1. Training Details

We run our experiments on Quadro RTX 8000 and Nvidia T4 GPUs. We define the perturbation set B(s) to be an l∞
norm perturbation of the state with radius ε: Bp(s, ε) := {s′|‖s′ − s‖ ≤ ε} in the experiments. We use a smoothed linear
ε-schedule during training as in (Zhang et al., 2020; Oikarinen et al., 2021). For the environments, we use the MuJoCo
environments in OpenAI Gym (Brockman et al., 2016). We use Hopper-v2, HalfCheetah-v2, Ant-v2, Walker2d-v2 with
1000 trial length.

Network Structures and Hyperparameters for Training For both policy networks and the model networks, we use the
same network as in (Pineda et al., 2021). For both MBPO and CAROL, we use the optimal hyperpapramters in (Pineda et al.,
2021). We mainly set two additional parameters, regularization parameters and the ε-schedule (Zhang et al., 2020; Oikarinen
et al., 2021; Gowal et al., 2018) parameters for CAROL. The additional regularization parameter λ for regularizing Lsymbolic

is chosen in {0.1, 0.5, 1.0}. The ε-schedule starts as an exponential growth from ε = 10−12 and transitions smoothly into
a linear schedule until reaching εtrain. Then the schedule keeps εt = εtrain for the rest iterations. We set the temperature
parameter controlling the exponential growth with 4.0 for all experiments. We have two other parameters to control the
ε-schedule: endStep, and finalStep, where endStep is the step where εt reaches εtrain and finalStep is the steps for the total
training. The midStep = 0.25 ∗ endStep is the turning point from the exponential growth to the linear growth. Table 3 shows
the details of each parameters.

C.2. Certificate Usage

In evaluation, we compare the certified performance of policies trained from different algorithms with a set of environment
models. We train these models based on the rollout trajectory dataset for 4× 105 environment steps between 5 policies and
the environment. Among these 5 policies, three of them are trained from MBPO and the remaining are trained from SAC
(Haarnoja et al., 2018), which is the base algorithm without model for MBPO.

Policy Optimization with Robustness Certificates

Environments Methods endStep finalStep

Hopper CAROL 4× 105 5× 105

CAROL-SS 4× 105 5× 105

Ant CAROL 8× 105 9× 105

CAROL-SS 4× 106 5× 106

Walker2d CAROL 7× 105 7.5× 105

CAROL-SS 1.5× 106 2× 106

HalfCheetah CAROL 7.5× 105 8.5× 105

CAROL-SS 7.5× 105 8.5× 105

Table 3: Parameters for ε-schedule.

