
Optimization + Abstraction:
A Synergistic Approach for Analyzing Neural

Network Robustness
Greg Anderson

The University of Texas at Austin
Austin, Texas, USA

ganderso@cs.utexas.edu

Shankara Pailoor
The University of Texas at Austin

Austin, Texas, USA
spailoor@cs.utexas.edu

Isil Dillig
The University of Texas at Austin

Austin, Texas, USA
isil@cs.utexas.edu

Swarat Chaudhuri
Rice University

Houston, Texas, USA
swarat@rice.edu

Abstract
In recent years, the notion of local robustness (or robustness
for short) has emerged as a desirable property of deep neural
networks. Intuitively, robustness means that small perturba-
tions to an input do not cause the network to performmisclas-
sifications. In this paper, we present a novel algorithm for ver-
ifying robustness properties of neural networks. Our method
synergistically combines gradient-based optimization meth-
ods for counterexample search with abstraction-based proof
search to obtain a sound and (δ -)complete decision proce-
dure. Our method also employs a data-driven approach to
learn a verification policy that guides abstract interpretation
during proof search. We have implemented the proposed
approach in a tool called Charon and experimentally evalu-
ated it on hundreds of benchmarks. Our experiments show
that the proposed approach significantly outperforms three
state-of-the-art tools, namely AI2, Reluplex, and Reluval.
CCS Concepts • Theory of computation → Abstrac-
tion; • Computing methodologies → Neural networks;
Keywords Machine learning, Abstract Interpretation, Op-
timization, Robustness
ACM Reference Format:
Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri.
2019. Optimization + Abstraction:, A Synergistic Approach for
Analyzing Neural Network Robustness. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314614

Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3314221.
3314614

1 Introduction
In recent years, deep neural networks (DNNs) have gained
enormous popularity for a wide spectrum of applications,
ranging from image recognition[21, 28] and malware detec-
tion [57, 58] to machine translation[55]. Due to their surpris-
ing effectiveness in practice, deep learning has also found
numerous applications in safety-critical systems, including
self-driving cars [3, 5], unmanned aerial systems [24], and
medical diagnosis [9].

Despite their widespread use in a broad range of applica-
tion domains, it is well-known that deep neural networks are
vulnerable to adversarial counterexamples, which are small
perturbations to a network’s input that cause the network
to output incorrect labels [10, 40]. For instance, Figure 1
shows two adversarial examples in the context of speech
recognition and image classification. As shown in the top
half of Figure 1, two sound waves that are virtually indis-
tinguishable are recognized as “How are you?" and “Open
the door" by a DNN-based speech recognition system [16].
Similarly, as illustrated in the bottom half of the same figure,
applying a tiny perturbation to a panda image causes a DNN
to misclassify the image as that of a gibbon.
It is by now well-understood that such adversarial coun-

terexamples can pose serious security risks [56]. Priorwork [4,
14, 25, 41, 42] has advocated the property of local robust-
ness (or robustness for short) for protecting neural networks
against attacks that exploit such adversarial examples. To
understand what robustness means, consider a neural net-
work that classifies an input x as having label y. Then, local
robustness requires that all inputs x ′ that are “very similar” 1

to x are also classified as having the same label y.

1For example, “very similar” may mean x ′ is within some ϵ distance from
x , where distance can be measured using different metrics such as L2 norm.

https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1145/3314221.3314614

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

"Panda" "Gibbon"perturbation

perturbation"How are you?" "Open the door"

Figure 1. Small perturbations of the input cause the sound
wave and the image to be misclassified.

Due to the growing consensus on the desirability of ro-
bust neural networks, many recent efforts have sought to
algorithmically analyze robustness of networks. Of these,
one category of methods seeks to discover adversarial coun-
terexamples using numerical optimization techniques such
as Projected Gradient Descent (PGD) [34] and Fast Gradient
Sign Method (FGSM) [17]. A second category aims to prove

network robustness using symbolic methods ranging from
SMT-solving [25] to abstract interpretation [14, 54]. These
two categories of methods have complementary advantages.
Numerical counterexample search methods can quickly find
violations, but are “unsound”, in that they fail to offer cer-
tainty about a network’s robustness. In contrast, proof search
methods are sound, but they are either incomplete [14] (i.e.,
suffer from false positives) or do not scale well [25].
In this paper, we present a new technique for robustness

analysis of neural networks that combines the best of proof-
based and optimization-based methods. Our approach com-
bines formal reasoning techniques based on abstract inter-

pretation with continuous and black-box optimization tech-
niques from the machine learning community. This tight
coupling of optimization and abstraction has two key ad-
vantages: First, optimization-based methods can efficiently
search for counterexamples that prove the violation of the ro-
bustness property, allowing efficient falsification in addition
to verification. Second, optimization-based methods provide
a data-driven way to automatically refine the abstraction
when the property can be neither falsified nor proven.

The workflow of our approach is shown schematically in
Figure 2 and consists of both a training and a deployment

phase. During the training phase, our method uses black-box
optimization techniques to learn a so-called verification pol-

icy πθ from a representative set of training problems. Then
the deployment phase uses the learned verification policy to
guide how gradient-based counterexample search should be
coupled with proof synthesis for solving previously-unseen
verification problems.

The input to the deployment phase of our algorithm con-
sists of a neural networkN as well as a robustness specifica-
tion (I ,K) which states that all points in the input region I
should be classified as having label K . Given this input, our

Abstract
Interpreter

Adversarial
Ex. Finder

Network

Property

VerifiedRefuted

Data-driven policy learning algorithm

veri�cation

policy

Training problems
deploym

en
t

train
in

g

Sub-problems

Figure 2. Schematic overview of our approach.

algorithm first uses gradient-based optimization to search for
an adversarial counterexample, which is a point in the input
region I that is classified as having label K ′ , K . If we can
find such a counterexample, then the algorithm terminates
with a witness to the violation of the property. However,
even if the optimization procedure fails to find a true coun-
terexample, the result x∗ of the optimization problem can
still convey useful information. In particular, our method
uses the learned verification policy πθ to map all available
information, including x∗, to a promising abstract domainA
to use when attempting to verify the property. If the prop-
erty can be verified using domain A, then the algorithm
successfully terminates with a robustness proof.

In cases where the property is neither verified nor refuted,
our algorithm uses the verification policy πθ to split the input
region I into two sub-regions I1, I2 such that I = I1 ∪ I2 and
tries to verify/falsify the robustness of each region separately.
This form of refinement is useful for both the abstract in-
terpreter as well as the counterexample finder. In particular,
since gradient-based optimization methods are not guaran-
teed to find a global optimum, splitting the input region into
smaller parts makes it more likely that the optimizer can
find an adversarial counterexample. Splitting the input re-
gion is similarly useful for the abstract interpreter because
the amount of imprecision introduced by the abstraction is
correlated with the size of the input region.
As illustrated by the discussion above, a key part of our

verification algorithm is the use of a policy πθ to decide
(a) which abstract domain to use for verification, and (b)
how to split the input region into two sub-regions. Since
there is no obvious choice for either the abstract domain
or the splitting strategy, our algorithm takes a data-driven
approach to learn a suitable verification policy πθ during a
training phase. During this training phase, we use a black-
box optimization technique known as Bayesian optimization
to learn values of θ that lead to strong performance on a
representative set of verification problems. Once this phase
is over, the algorithm can be deployed on networks and
properties that have not been encountered during training.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Our proposed verification algorithm has some appeal-
ing theoretical properties in that it is both sound and δ -
complete [12]. That is, if our method verifies the property
(I ,K) for network N , this means that N does indeed clas-
sify all points in the input region I as belonging to class K .
Furthermore, our method is δ -complete in the sense that, if
the property is falsified with counterexample x∗, this means
that x∗ is within δ of being a true counterexample.
We have implemented the proposed method in a tool

called Charon 2, and used it to analyze hundreds of ro-
bustness properties of ReLU neural networks, including both
fully-connected and convolutional neural networks, trained
on the MNIST [30] and CIFAR [27] datasets. We have also
compared our method against state-of-the-art network ver-
ification tools (namely, Reluplex, ReluVal, and AI2) and
shown that our method outperforms all prior verification
techniques, either in terms of accuracy or performance or
both. In addition, our experimental results reveal the benefits
of learning to couple proof search and optimization.

In all, this paper makes the following key contributions:

• We present a new sound and δ -complete decision proce-
dure that combines abstract interpretation and gradient-
based counterexample search to prove robustness of deep
neural networks.
• We describe a method for automatically learning verifi-
cation policies that direct counterexample search and ab-
stract interpretation steps carried out during the analysis.
• We conduct an extensive experimental evaluation on hun-
dreds of benchmarks and show that our method signif-
icantly outperforms state-of-the-art tools for verifying
neural networks. For example, our method solves 2.6×
and 16.6× more benchmarks compared to ReluVal and
Reluplex respectively.

Organization. The rest of this paper is organized as follows.
In Section 2, we provide necessary background on neural
networks, robustness, and abstract interpretation of neural
networks. In Section 3, we present our algorithm for check-
ing robustness, given a verification policy (i.e., the deploy-
ment phase). Section 4 describes our data-driven approach
for learning a useful verification policy from training data
(i.e., the training phase), and Section 5 discusses the theo-
retical properties of our algorithm. Finally, Sections 6 and 7
describe our implementation and experimental evaluation,
Section 8 discusses related work, and Section 9 concludes.

2 Background
In this section, we provide some background on neural net-
works and robustness.

2Complete Hybrid Abstraction Refinement and Optimization for Neural
Networks.

ReLU

1 0
-1

1

1 1

Layer 1 Layer 2

-1 1
0

2
1 -2

Figure 3. A feedforward network implementing XOR

2.1 Neural Networks
A neural network is a function N : Rn → Rm of the form
L1 ◦ σ1 ◦ · · · ◦ σk−1 ◦ Lk , where each Li is a differentiable
layer and each σi is a non-linear, almost-everywhere dif-
ferentiable activation function. While there are many types
of activation functions, the most popular choice in modern
neural networks is the rectified linear unit (ReLU), defined as
ReLU(x) = max(x , 0). This function is applied element-wise
to the output of each layer except the last. In this work, we
consider feed-forward and convolutional networks, which
have the additional property of being Lipschitz-continuous 3.

For the purposes of this work, we think of each layer Li as
an affine transformation (W ,b) whereW is a weight matrix

and b is a bias vector. Thus, the output of the i’th layer is
computed as y =Wx + b. We note that both fully-connected

as well as convolutional layers can be expressed as affine
transformations [14]. While our approach can also handle
other types of layers (e.g., max pooling), we only focus on
affine transformations to simplify presentation.

In this work, we consider networks used for classification
tasks. That is, given some input x ∈ Rn , we wish to put x
into one ofm classes. The output of the network y ∈ Rm is
interpreted as a vector of scores, one for each class. Then x
is put into the class with the highest score. More formally,
given some input x , we say the network N assigns x to a
class K if (N(x))K > (N(x))j for all j , K .

Example 2.1. Figure 3 shows a 2-layer feedforward neural
network implementing the XOR function. To see why this
network “implements” XOR, consider the vector [0 0]⊤. After
applying the affine transformation from the first layer, we
obtain [0 − 1]⊤. After applying ReLU, we get [0 0]⊤. Finally,
after applying the affine transform in the second layer, we
get [1 0]⊤. Because the output at index zero is greater than
the output at index one, the network will classify [0 0]⊤ as a
zero. Similarly, this network classifies both [0 1]⊤ and [1 0]⊤
as 1 and [1 1]⊤ as 0.

2.2 Robustness
(Local) robustness [4] is a key correctness property of neural
networks which requires that all inputs within some region
of the input space fall within the same region of the output
space. Since we focus on networks designed for classification
tasks, we will define “the same region of the output space”
to mean the region which assigns the same class to the input.
3Recall that a function is Lipschitz-continuous if there exists a positive real
constantM such that, for all x1, x2, we have |f (x1) − f (x2) | ≤ M |x1 − x2 |

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

One
Zonotope

Two
Zonotopes

Figure 4. Zonotope analysis of a neural network.

That is, a robustness property asserts that a small change in
the input cannot change the class assigned to that input.
More formally, a robustness property is a pair (I ,K) with

I ⊆ Rn and 0 ≤ K ≤ m − 1. Here, I defines some region of
the input that we are interested in and K is the class into
which all the inputs in I should be placed. A network N is
said to satisfy a robustness property (I ,K) if for all x ∈ I , we
have (N(x))K > (N(x))j for all j , K .

Example 2.2. Consider the following network with two
layers, i.e., N(x) =W2(ReLU(W1x + b1)) + b2 where:

W1 =

[
1
2

]
b1 =

[
−1
1

]
W2 =

[
2 1
−1 1

]
b2 =

[
1
2

]
For the inputx = 0, we haveN(0) = [1 3]⊤; thus, the network
outputs label 1 for input 0. Let I = [−1, 1] and K = 1. Then
for all x ∈ I , the output ofN is of the form [a + 1 a + 2]T for
some a ∈ [0, 3]. Therefore, the network classifies every point
in I as belonging to class 1, meaning that the network is
robust in [−1, 1]. On the other hand, suppose we extend this
interval to I ′ = [−1, 2]. Then N(2) = [8 6]⊤, so N assigns
input 2 as belonging to class 0. Therefore N is not robust in
the input region [−1, 2].

2.3 Abstract Interpretation for Neural Networks
In this paper, we build on the prior AI2 work [14] for an-
alyzing neural networks using the framework of abstract
interpretation [7]. AI2 allows analyzing neural networks us-
ing a variety of numeric abstract domains, including intervals
(boxes) [7], polyhedra [49], and zonotopes [15]. In addition,
AI2 also supports bounded powerset domains [7], which essen-
tially allow a bounded number of disjunctions in the abstrac-
tion. Since the user can specify any number of disjunctions,
there are many different abstract domains to choose from,

and the precision and scalability of the analysis crucially
depend on one’s choice of the abstract domain.
The following example illustrates a robustness property

that can be verified using the bounded zonotope domain
with two disjuncts but not with intervals or plain zonotopes:

Example 2.3. Consider a network defined as:

N(x) =

[
1 1.1
−1 1

]
ReLU

([
1 −3
0 3

]
x +

[
1
1

])
+

[
−3
1.2

]
As in the previous example, the first index in the output
vector corresponds to class A and the second index corre-
sponds to class B. Now, suppose we want to verify that for
all x ∈ [0, 1]2, the network assigns class B to x .
Let us now analyze this network using the zonotope ab-

stract domain, which overapproximates a given region using
a zonotope (i.e., center-symmetric polytope). The analysis
of this network using the zonotope domain is illustrated in
Figure 4. At first, the initial region is propagated through
the affine transformation as a single zonotope. Then, this
zonotope is split into two pieces, the blue (crosshatched) one
for which x1 ≥ 0 and the red (diagonally striped) one for
which x1 ≤ 0. The ReLU transforms the red piece into a line.
(We omit the ReLU over x2 because it does not change the
zonotopes in this case.) After the ReLU, we show two cases:
on top is the plain zonotope domain, and on the bottom is a
powerset of zonotopes domain. In the plain zonotope domain,
the abstraction after the ReLU is the join of the blue and red
zonotopes, while in the powerset domain we keep the blue
and red zonotopes separate. The final images show how the
second affine transformation affects all three zonotopes.
This example illustrates that the propery cannot be veri-

fied using the plain zonotope domain, but it can be verified
using the powerset of zonotopes domain. Specifically, ob-
serve that the green (vertically striped) zonotope at the top

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

includes the point [1.2 1.2]⊤ (marked by a dot), where the
robustness specification is violated. On the other hand, the
blue and red zonotopes obtained using the powerset domain
do not contain any unsafe points, so the property is verified
using this more precise abstraction.

3 Algorithm for Checking Robustness
In this section, we describe our algorithm for checking ro-
bustness properties of neural networks. Our algorithm in-
terleaves optimization-based counterexample search with
proof synthesis using abstraction refinement. At a high level,
abstract interpretation provides an efficient way to verify
properties but is subject to false positives. Conversely, opti-
mization based techniques for finding counterexamples are
efficient for finding adversarial inputs, but suffer from false
negatives. Our algorithm combines the strengths of these
two techniques by searching for both proofs and counterex-
amples at the same time and using information from the
counterexample search to guide proof search.
Before we describe our algorithm in detail, we need to

define our optimization problem more formally. Given a
network N and a robustness property (I ,K), we can view
the search for an adversarial counterexample as the following
optimization problem:

x∗ = argmin
x ∈I

(F (x)) (1)

where our objective function F is defined as follows:
F (x) = (N(x))K −max

j,K
(N(x))j (2)

Intuitively, the objective function F measures the differ-
ence between the score for class K and the maximum score
among classes other than K . Note that if the value of this
objective function is not positive at some point x , then there
exists some class which has a greater (or equal) score than
the target class, so point x constitutes a true adversarial
counterexample.

The optimization problem from Eq. 1 is clearly useful for
searching for counterexamples to the robustness property.
However, even if the solution x∗ is not a true counterexample
(i.e., F (x∗) > 0), we can still use the result of the optimization
problem to guide proof search.

Based on this intuition, we now explain our decision pro-
cedure, shown in Algorithm 1, in more detail. The Verify
procedure takes as input a networkN , a robustness property
(I ,K) to be verified, and a so-called verification policy πθ . As
mentioned in Section 1, the verification policy is used to
decide what kind of abstraction to use and how to split the
input region when attempting to verify the property. In more
detail, the verification policy πθ , parameterized by θ , is a pair
(πα

θ ,π
I
θ), where π

α
θ is a (parameterized) function known as

the domain policy and π I
θ is a function known as the partition

policy. The domain policy is used to decide which abstract
domain to use, while the partition policy determines how

Algorithm 1 The main algorithm
1: procedure Verify(N , I ,K ,πθ)

input: A network N , robustness property (I ,K) and ver-
ification policy πθ = (π

α
θ ,π

I
θ)

output: Counterexample ifN is not robust, or Verified.
2: x∗ ← Minimize(I ,F)
3: if F (x∗) ≤ 0 then
4: return x∗
5: A ← πα

θ (N , I ,K ,x∗)
6: if Analyze(N , I ,K ,A) = Verified then
7: return Verified
8: (I1, I2) ← π I

θ (N , I ,K ,x∗)
9: r1 ← Verify(N , I1,K ,πθ)
10: if r1 , Verified then
11: return r1
12: return Verify(N , I2,K ,πθ)

to split the input region I into two partitions to be analyzed
separately. In general, it is quite difficult to write a good
verification policy by hand because there are many different
parameters to tune and neural networks are quite opaque
and difficult to interpret. In Section 4, we explain how the
parameters of these policy functions are learned from data.
At a high-level, the Verify procedure works as follows:

First, we try to find a counterexample to the given robust-
ness property by solving the optimization problem from
Eq. 1 using the well-known projected gradient descent (PGD)

technique. If F (x∗) is non-positive, we have found a true
counterexample, so the algorithm produces x∗ as a witness
to the violation of the property. Otherwise, we try to verify
the property using abstract interpretation.
As mentioned in Section 2, there are many different ab-

stract domains that can be used to verify the property, and
the choice of the abstract domain has a huge impact on the
success and efficiency of verification. Thus, our approach
leverages the domain policy πα

θ to choose a sensible abstract
domain to use when attempting to verify the property. Specif-
ically, the domain policy πα

θ takes as input the network N ,
the robustness specification (I ,K), and the solution x∗ to the
optimization problem and chooses an abstract domain A
that should be used for attempting to prove the property. If
the property can be verified using domain A, the algorithm
terminates with a proof of robustness.

In cases where the property is neither verified nor refuted
in the current iteration, the algorithm makes progress by
splitting the input region I into two disjoint partitions I1, I2
such that I = I1 ⊎ I2. The intuition is that, even if we cannot
prove robustness for the whole input region I , we may be
able to increase analysis precision by performing a case split.
That is, as long as all points in both I1 and I2 are classified
as having label K , this means that all points in I are also
assigned label K since we have I = I1 ∪ I2. In cases where

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

Figure 5. The splits chosen for Example 3.1.

the property is false, splitting the input region into two par-
tition can similarly help adversarial counterexample search
because gradient-based optimization methods do not always
converge to a global optimum.

Based on the above discussion, the key question is how to
partition the input region I into two regions I1, I2 so that each
of I1, I2 has a good chance of being verified or falsified. Since
this question again does not have an obvious answer, we
utilize our partition policy π I

θ to make this decision. Similar
to the domain policy, π I

θ takes as input the network, the
property, and the solution x∗ to the optimization problem and
“cuts” I into two sub-regions I1 and I2 using a hyper-plane.
Then, the property is verified if and only if the recursive call
to Verify is succsessful on both regions.

Example 3.1. Consider the XOR network from Figure 3 and
the robustness property ([0.3, 0.7]2, 1). That is, for all inputs
x with 0.3 ≤ x1,x2 ≤ 0.7, x should be assigned to class 1
(assume classes are zero-indexed). We now illustrate how
Algorithm 1 verifies this property using the plain interval
and zonotope abstract domains. The process is illustrated in
Figure 5, which shows the splits made in each iteration as
well as the domain used to analyze each region (Z denotes
zonotopes, and I stands for intervals).
Algorithm 1 starts by searching for an adversarial coun-

terexample, but fails to find one since the property actually
holds. Now, suppose that our domain policy πα

θ chooses
zonotopes to try to verify the property. Since the property
cannot be verified using zonotopes, the call to Analyze will
fail. Thus, we now consult the partition policy π I

θ to split
this region into two pieces I1 = [0.3, 0.5] × [0.3, 0.7] and
I2 = [0.5, 0.7] × [0.3, 0.7].
Next, we recursively invoke Algorithm 1 on both sub-

regions I1 and I2. Again, there is no counterexample for either
region, so we use the domain policy to choose an abstract
domain for each of I1 and I2. Suppose that πα

θ yields the
zonotope domain for both I1 and I2. Using this domain, we
can verify robustness in I1 but not in I2. Thus, for the second
sub-problem, we again consult π I

θ to obtain two sub-regions
I2,1 = [0.5, 0.7] × [0.3, 0.42] and I2,2 = [0.5, 0.7] × [0.42, 0.7]
and determine using πα

θ that I2,1, I2,2 should be analyzed us-
ing intervals and zonotopes respectively. Since robustness
can be verified using these domains, the algorithm success-
fully terminates. Notice that the three verified subregions
cover the entire initial region.

4 Learning a Verification Policy
As described in Section 3, our decision procedure for check-
ing robustness uses a verification policy πθ = (π

α
θ ,π

I
θ) to

choose a suitable abstract domain and an input partitioning
strategy. In this section, we discuss our policy representation
and how to learn values of θ that lead to good performance.

4.1 Policy Representation
In this work, we implement verification policies πα

θ and π I
θ

using a function of the following shape:

φ(θ ρ(N , I ,K ,x∗)) (3)

where ρ is a featurization function that extracts a feature
vector from the input, φ is a selection function that converts
a real-valued vector to a suitable output (i.e., an abstract
domain for πα

θ and the two subregions for π I
θ), and θ corre-

sponds to a parameter matrix that is automatically learned
from a representative set of training data. We discuss our
featurization and selection functions in this sub-section and
explain how to learn parameters θ in the next sub-section.

Featurization. As standard in machine learning, we need
to convert the input ι = (N , I ,K ,x∗) to a feature vector.
Our choice of features is influenced by our insights about
the verification problem, and we deliberately use a small
number of features for two reasons: First, a large number of
dimensions can lead to overfitting and poor generalization
(which is especially an issue when training data is fairly
small). Second, a high-dimensional feature vector leads to a
more difficult learning problem, and contemporary Bayesian
optimization engines only scale to a few tens of dimensions.
Concretely, our featurization function considers several

kinds of information, including: (a) the behavior of the net-
work near x∗, (b) where x∗ falls in the input space, and (c) the
size of the input space. Intuitively, we expect that (a) is useful
because as x∗ comes closer to violating the specification, we
should need a more precise abstraction, while (b) and (c) in-
form howwe should split the input region during refinement.
Since the precision of the analysis is correlated with how the
split is performed, we found the same featurization function
to work well for both policies πα

θ and π I
θ . In Section 6, we

discuss the exact features used in our implementation.

Selection function. Recall that the purpose of the selection
function φ is to convert θρ(ι) to a "strategy", which is an
abstract domain for πα and a hyper-plane for π I . Since the
strategies for these two functions are quite different, we
use two different selection functions, denoted φα ,φI for the
domain and partition policies respectively.
The selection function φα is quite simple and maps θρ(ι)

to a tuple (d,k) where d denotes the base abstract domain
(either intervals I or zonotopes Z in our implementation) and
k denotes the number of disjuncts. Thus, (Z, 2) denotes the
powerset of zonotopes abstract domain, where the maximum

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

number of disjuncts is restricted to 2, and (I, 1) corresponds
to the standard interval domain.

In the case of the partition policy π I , the selection function
φI is also a tuple (d, c) where d is the dimension along which
we split the input region and c is the point at which to split.
In other words, if φI (θρ(ι)) = (d, c), this means that we split
the input region I using the hyperplane xd = c . Our selection
function φI does not consider arbitrary hyperplanes of the
form c1x1 + . . . cnxn = c because splitting the input region
along an arbitrary hyperplane may result in sub-regions
that are not expressible in the chosen abstract domain. In
particular, this is true for both the interval and zonotope
domains used in our implementation.

4.2 Learning using Bayesian Optimization
As made evident by Eq. 3, the parameter matrix θ has a huge
impact on the choices made by our verification algorithm.
However, manually coming up with these parameters is very
difficult because the right choice of coefficients depends on
both the property, the network, and the underlying abstract
interpretation engine. In this work, we take a data-driven ap-
proach to solve this problem and use Bayesian optimization to
learn a parameter matrix θ that leads to optimal performance
by the verifier on a set of training problems.

Background on Bayesian optimization. Given a function
F : Rn → R, the goal of Bayesian optimization is to find
a vector x∗ ∈ Rn that maximizes F . Importantly, Bayesian
optimization does not assume that F is differentiable; also,
in practice, it can achieve reasonable performance without
having to evaluate F very many times. In our setting, the
function F represents the performance of a verification policy.
This function is not necessarily differentiable in the param-
eters of the verification policy, as a small perturbation to
the policy parameters can lead to the choice of a different
domain. Also, evaluating the function requires an expensive
round of abstract interpretation. For these reasons, Bayesian
optimization is a good fit to our learning problem.

At a high level, Bayesian optimization repeatedly samples
inputs until a time limit is reached and returns the best in-
put found so far. However, rather than sampling inputs at
random, the key part of Bayesian optimization is to predict
what input is useful to sample next. Towards this goal, the
algorithm uses (1) a surrogate modelM that expresses our
current belief about F , and (b) an acquisition functionA that
employsM to decide the most promising input to sample in
the next iteration. The surrogate modelM is initialized to
capture prior beliefs about F and is updated based on obser-
vations on the sampled points. The acquisition functionA is
chosen to trade off exploration and exploitationwhere "explo-
ration" involves sampling points with high uncertainty, and
"exploitation" involves sampling points whereM predicts a
high value of F . Given modelM and function A, Bayesian
optimization samples the most promising input x according

to A, evaluates F at x , and updates the statistical modelM
based on the observation F (x). This process is repeated until
a time limit is reached, and the best input sampled so far is
returned as the optimum. We refer the reader to [37] for a
more detailed overview of Bayesian optimization.

Using Bayesian optimization. In order to apply Bayesian
optimization to our setting, we first need to define what func-
tion we want to optimize. Intuitively, our objective function
should estimate the quality of the analysis results based on
decisions made by verification policy πθ . Towards this goal,
we fix a set S of representative training problems that can be
used to estimate the quality of πθ . Then, given a parameters
matrix θ , our objective function F calculates a score based
on (a) how many benchmarks in S can be successfully solved
within a given time limit, and (b) how long it takes to solve
the benchmarks in S . More specifically, our objective func-
tion F is parameterized by a time limit t ∈ R and penalty
p ∈ R and calculates the score for a matrix θ as follows:

F (θ) = −
∑
s ∈S

costθ (s)

where:

costθ (s) =

{
Time(Verifyθ (s)) if s solved within t
p · t otherwise

Intuitively, p controls how much we want to penalize
failed verification attempts – i.e., the higher the value of
p, the more biased the learning algorithm is towards more
precise (but potentially slow) strategies. On the other hand,
small values of p bias learning towards strategies that yield
fast results on the solved benchmarks, even if some of the
benchmarks cannot be solved within the given time limit. 4
In order to apply Bayesian optimization to our problem,

we also need to choose a suitable acquisition function and
surrogate mode. Following standard practice, we adopt a
Gaussian process [44] as our surrogatemodel and use expected
improvement [6] for the acquisition function.

5 Termination and Delta Completeness
In this section, we discuss some theoretical properties of
our verification algorithm, including soundness, termina-
tion, and completeness. To start with, it is easy to see that
Algorithm 1 is sound, as it only returns "Verified" once it
establishes that every point in the input space is classified
as K . This is the case because every time we split the input
region I into two sub-regions I1, I2, we ensure that I = I1∪ I2,
and the underlying abstract interpreter is assumed to be
sound. However, it is less clear whether Algorithm 1 always
terminates or whether it has any completeness guarantees.
Our first observation is that the Verify procedure, ex-

actly as presented in Algorithm 1, does not have termination
guarantees under realistic assumptions about the optimiza-
tion procedure used for finding adversarial counterexamples.
4In our implementation, we choose p = 2, t = 700s .

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

Specifically, if the procedure Minimize invoked at line 2
of Algorithm 1 returned a global minimum, then we could
indeed guarantee termination. 5 However, since gradient-
based optimization procedures do not have this property,
Algorithm 1 may not be able to find a true adversarial coun-
terexample even as we make the input region infinitesimally
small. Fortunately, we can guarantee termination and a form
of completeness (known as δ -completeness) by making a
very small change to Algorithm 1.

To guarantee termination of our verification algorithm, we
will make the following slight change to line 3 of Algorithm 1:
Rather than checking F (x∗) ≤ 0 (for F as defined in Eq. 2)
we will instead check:

F (x∗) ≤ δ (4)
While this modification can cause our verification algorithm
to produce false positives under certain pathological condi-
tions, the analysis can be made as precise as necessary by
picking a value of δ that is arbitrarily close to 0. Furthermore,
under this change, we can now prove termination under
some mild and realistic assumptions. In order to formally
state these assumptions, we first introduce the following
notion of the diameter of a region:
Definition 5.1. For any set X ⊆ Rn , its diameter D(X) is
defined as sup{∥x1 − x2∥2 | x1,x2 ∈ X } if this value exists.
Otherwise the set is said to have infinite diameter.
We now use this notion of diameter to state two key as-

sumptions that are needed to prove termination:
Assumption 1. There exists some λ ∈ (0, 1) such that for any
network N , input region I , and point x∗ ∈ I , if π

I (N , I ,x∗) =
(I1, I2), then D(I1) < λD(I) and D(I2) < λD(I).

Intuitively, this assumption states that the two resulting
subregions after splitting are smaller than the original region
by some factor λ. It is easy to enforce this condition on any
partition policy by choosing a hyper-plane xd = c where c
is not at the boundary of the input region.

Our second assumption concerns the abstract domain:
Assumption 2. LetN #

be the abstract transformer represent-

ing a network N . For a given input region I , we assume there

exists some KN ∈ R such that D(γ (N #(α(I)))) < KND(I).

This assumption asserts that the Lipschitz continuity of
the network extends to its abstract behavior. Note that this
assumption holds in several numerical domains including
intervals, zonotopes, and powersets thereof.
Theorem 5.2. Consider the variant of Algorithm 1 where the

predicate at line 3 is replaced with Eq. 4. Then, if the input

region has finite diameter, the verification algorithm always

terminates under Assumptions 1 and 2.
6

5However, if we make this assumption, the optimization procedure itself
would be a sound and complete decision procedure for verifying robustness!
6Proofs for all theorems can be found in the extended version of the paper
on arXiv: https://arxiv.org/abs/1904.06347

In addition to termination, our small modification to Algo-
rithm 1 also ensures a property called δ -completeness [12]. In
the context of satisfiability over real numbers,δ -completeness
means that, when the algorithm returns a satisfying as-
signment σ , the formula is either indeed satisfiable or a
δ -perturbation on its numeric terms would make it satis-
fiable. To adapt this notion of δ -completeness to our context,
we introduce the folowing concept δ -counterexamples:

Definition 5.3. For a given network N , input region I ,
target class K , and δ > 0, a δ -counterexample is a point
x ∈ I such that for some j with 1 ≤ j ≤ m and j , K ,
N(x)K − N(x)j ≤ δ .

Intuitively, a δ -counterexample is a point in the input
space for which the output almost violates the given specifi-
cation. We can view δ as a parameter which controls how
close to violating the specification a point must be to be
considered “almost” a counterexample.

Theorem 5.4. Consider the variant of Algorithm 1 where the

predicate at line 3 is replaced with Eq. 4. Then, the verification

algorithm is δ -complete — i.e., if the property is not verified, it

returns a δ -counterexample.

6 Implementation
We have implemented the ideas proposed in this paper in a
tool called Charon, written in C++. Internally, Charon uses
the ELINA abstract interpretation library [1] to implement
the Analyze procedure from Algorithm 1, and it uses the
BayesOpt library [35] to perform Bayesian optimization.

Parallelization. Our proposed verification algorithm is eas-
ily parallelizable, as different calls to the abstract interpreter
can be run on different threads. Our implementation takes
advantage of this observation and utilizes as many threads
as the host machine can provide by running different calls
to ELINA in parallel.

Training. We trained our verification policy on 12 different
robustness properties of a neural network used in the ACAS
Xu collision avoidance system [24]. However, since even
verifying even a single benchmark can take a very long
time, our implementation uses two tactics to reduce training
time. First, we parallelize the training phase of the algorithm
using the MPI framework [11] and solve each benchmark at
the same time. Second, we set a time limit of 700 seconds
(per-process cputime) per benchmark. Contrary to what we
may expect from machine learning systems, a small set of
benchmarks is sufficient to learn a good strategy for our
setting. We conjecture that this is because the relatively
small number of features allowed by Bayesian optimization
helps to regularize the learned policy.

Featurization. Recall that our verification policy uses a fea-
turization function to convert its input to a feature vector. As
mentioned in Section 4.1, this featurization function should

https://arxiv.org/abs/1904.06347

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

select a compact set of features so that our training is efficient
and avoids overfitting our policy to the training set. These
features should also capture revalant information about the
network and the property so that our learned policy can
generalize across networks. With this in mind, we used the
following features in our implementation:
• the distance between the center of the input region I and
the solution x∗ to the optimization problem
• the value of the objective function F (Eq. 2) at x∗
• the magnitude of the gradient of the network at x∗
• average length of the input space along each dimension

Selection. Recall from Section 4 that our verification pol-
icy π uses two different selection functions φα and φI for
choosing an abstract domain and splitting plane respectively.
The selection function φI takes a vector of three inputs.

The first two are real-valued numbers that decide which
dimension to split on. Rather than considering all possible
dimensions, our implementation chooses between two di-
mensions to make training more manageable. The first one is
the longest dimension (i.e., input dimension with the largest
length), and the second one is the dimension that has the
largest influence [54] on N(x)K . The last input to the selec-
tion function is the offset at which to split the region. This
value is clipped to [0, 1] and then interpreted as a ratio of the
distance from the center of the input region I to the solution
x∗ of Eq. 1. For example, if the value is 0, the region will be
bisected, and if the value is 1, then the splitting plane will in-
tersect x∗. Finally, if the splitting plane is at the boundary of I ,
it is offset slightly so that the strategy satisfies Assumption 1.
The selection function φα for choosing an abstract do-

main takes a vector of two inputs. The first controls the base
abstract domain (intervals or zonotopes) and the second con-
trols the number of disjuncts to use. In both cases, the output
is extracted by first clipping the input to a fixed range and
then discretizing the resulting value.

7 Evaluation
To evaluate the ideas proposed in this paper, we conduct
an experimental evaluation that is designed to answer the
following three research questions:
(RQ1) How does Charon compare against state-of-the-art

tools for proving neural network robustness?
(RQ2) How does counterexample search impact the perfor-

mance of Charon?
(RQ3) What is the impact of learning a verification policy on

the performance of Charon?

Benchmarks. To answer these research questions, we col-
lected a benchmark suite of 602 verification problems across 7
deep neural networks, including one convolutional network
and several fully connected networks. The fully connected
networks have sizes 3×100, 6×100, 9×100, and 9×200, where
N ×M means there are N fully connected layers and each

interior layer has size M . The convolutional network has
a LeNet architecture [30] consisting of two convolutional
layers, followed by a max pooling layer, two more convolu-
tional layers, another max pooling layer, and finally three
fully connected layers. All of these networks were trained
on the MNIST [30] and CIFAR [27] datasets.

7.1 Comparison with AI2 (RQ1)
For each network, we attempt to verify around 100 robust-
ness properties. Following prior work [14], the evaluated
robustness properties are so-called brightening attacks [41].
For an input point x and a threshold τ , a brightening attack
consists of the input region

I =
{
x ′ ∈ Rn | ∀i .(xi ≥ τ ∧ xi ≤ x ′i ≤ 1) ∨ x ′i = xi

}
.

That is, for each pixel in the input image, if the value of that
pixel is greater than τ , then the corresponding pixel in the
perturbed image may be anywhere between the initial value
and one, and all other pixels remain unchanged.

Set-up. All experiments described in this section were per-
formed on the Google Compute Engine (GCE) [2] using an
8 vcpu instance with 10.5 GB of memory. All time measure-
ments report the total CPU time (rather than wall clock time)
in order to avoid biasing the results because of Charon’s
parallel nature. For the purposes of this experiment, we set
a time limit of 1000 seconds per benchmark.
In this section we compare Charon with AI2 7, a state-

of-the-art tool for verifying network robustness [14]. As
discussed in Section 2, AI2 is incomplete and requires the
user to specify which abstract domain to use. Following their
evaluation strategy from the IEEE S&P paper [14], we in-
stantiate AI2 with two different domains, namely zonotopes
and bounded powersets of zonotopes of size 64. We refer to
these two variants as AI2-Zonotope and AI2-Bounded64.
The results of this comparison are summarized in Fig-

ure 6. This graph shows the percentage of benchmarks each
tool was able to verify or falsify, as well as the percentage
of benchmarks where the tool timed out and the percent-
age where the tool was unable to conclude either true or
false. Note that, because Charon is δ -complete, there are
no “unknown” results for it, and because AI2 cannot find
counterexamples, AI2 has no “falsified” results.
The details for each network are shown in Figures 7 - 13.

Each chart shows the cumulative time taken on the y-axis
and the number of benchmarks solved on the x-axis (so
lower is better). The results for each tool include only those
benchmarks that the tool could solve correctly within the
time limit of 1000 seconds. Thus, a line extending further to
the right indicates that the tool could solve more benchmarks.

7Because we did not have access to the original AI2, we reimplemented
it. However, to allow for a fair comparison, we use the same underlying
abstract interpretation library, and we implement the transformers exactly
as described in [14].

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

Figure 6. Summary of results for AI2 and Charon.

Figure 7. Comparison on a 3x100 MNIST network.

Figure 8. Comparison on a 6x100 MNIST network.

Figure 9. Comparison on a 9x200 MNIST network.

Since AI2-Bounded64 times out on every benchmark for the
convolutional network, it does not appear in Figure 13.

Figure 10. Comparison on a 3x100 CIFAR network.

Figure 11. Comparison on a 6x100 CIFAR network.

Figure 12. Comparison on a 9x100 CIFAR network.

The key take-away lesson from this experiment is that
Charon is able to both solve more benchmarks compared
to AI2-Bounded64 on most networks, and it is able to solve

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 13. Comparison on a convolutional network.

Figure 14. Comparison with ReluVal.

them much faster. In particular, Charon solves 59.7% (resp.
84.7%) more benchmarks compared to AI2-Bounded64 (resp.
AI2-Zonotope). Furthermore, among the benchmarks that
can be solved by both tools, Charon is 6.15× (resp. 1.12×
) faster compared to AI2-Bounded64 (resp. AI2-Zonotope).
Thus, we believe these results demonstrate the advantages
of our approach compared to AI2.

7.2 Comparison with Complete Tools (RQ1)
In this section we compare Charon with other complete
tools for robustness analysis, namely ReluVal [54] and Re-
luplex [25]. Among these tools, Reluplex implements a
variant of Simplex with built-in support for the ReLU activa-
tion function [25], and ReluVal is an abstraction refinement
approach without learning or counterexample search.
To perform this experiment, we evaluate all three tools

on the same benchmarks from Section 7.1. However, since
ReluVal and Reluplex do not support convolutional layers,
we exclude the convolutional net from this evaluation.

The results of this comparison are summarized in Fig-
ure 14. Across all benchmarks, Charon is able to solve 2.6×
(resp. 16.6×) more problems compared to ReluVal (resp.
Reluplex). Furthermore, it is worth noting that the set of
benchmarks that can be solved byCharon is a strict superset
of the benchmarks solved by ReluVal.

Figure 15. Comparison with ReluVal on verified bench-
marks.

7.3 Impact of Counterexample Search (RQ2)
To understand the benefit of using optimization to search
for counterexamples, we now compare the number of prop-
erties that can be falsified using Charon vs. Reluplex and
ReluVal. (Recall that AI2 is incomplete and cannot be used
for falsification.) Among the 585 benchmarks used in the
evaluation from Section 7.2, Charon can falsify robustness
of 123 benchmarks. In contrast, Reluplex can only falsify ro-
bustness of one benchmark, and ReluVal cannot falsify any
of them. Thus, we believe these results demonstrate the use-
fulness of incorporating optimization-based counterexample
search into the decision procedure.

7.4 Impact of Learning a Verification Policy (RQ3)
Recall that a key feature of our algorithm is the use of a
machine-learnt verification policy π to choose a refinement
strategy. To explore the impact of this design choice, we
compare our technique against ReluVal on the subset of the
585 benchmarks for which the robustness property holds.
In particular, as mentioned earlier, ReluVal is also based
on a form of abstraction refinement but uses a static, hand-
crafted strategy rather than one that is learned from data.
Thus, comparing against ReluVal on the verifiably-robust
benchmarks allows us to evaluate the benefits of learning a
verification policy from data. 8

The results of this comparison are shown in Figure 15. As
we can see from this figure, ReluVal is still only able to solve
between 35-70% of the benchmarks that can be successfully
solved by Charon. Thus, these results demonstrate that
our data-driven approach to learning verification policies is
useful for verifying network robustness.

8We compare with ReluVal directly rather than reimplementing the Re-
luVal strategy inside Charon because our abstract interpretation engine
does not support the domain used by ReluVal. Given this, we believe the
comparison to ReluVal is the most fair available option.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

8 Related Work
In this section, we survey existing work on robustness anal-
ysis of neural networks and other ideas related to this paper.

Adversarial Examples andRobustness. Szegedy et al. [51]
first showed that neural networks are vulnerable to small
perturbations on inputs. It has since been shown that such ex-
amples can be exploited to attack machine learning systems
in safety-critical applications such as autonomous robot-
ics [36] and malware classication [19].
Bastani et al. [4] formalized the notion of local robust-

ness in neural networks and defined metrics to evaluate
the robustness of a neural network. Subsequent work has
introduced other notions of robustness [18, 25].
Many recent papers have studied the construction of ad-

versarial counterexamples [17, 20, 29, 33, 34, 38, 45, 52].
These approaches are based on various forms of gradient-
based optimization, for example L-BFGS [50], FGSM [17] and
PGD [34]. While our implementation uses the PGD method,
we could in principle also use (and benefit from advances in)
alternative gradient-based optimization methods.

Verification of Neural Networks. Scheibler et al. [46] used
bounded model checking to verify safety of neural networks.
Katz et al.[26] developed the Reluplex decision procedure
extending the Simplex algorithm to verify robustness and
safety properties of feedforward networks with ReLU units.
Huang et al.[23] showed a verification framework, based on
an SMT solver, which verified robustness with respect to a
certain set of functions that can manipulate the input. A few
recent papers [8, 32, 53] use Mixed Integer Linear Program-
ming (MILP) solvers to verify local robustness properties of
neural networks. These methods do not use abstraction and
do not scale very well, but combining these techniques with
abstraction is an interesting area of future work.
The earliest effort on neural network verification to use

abstraction was by Pulina and Tacchella [43] — in fact, like
our method, they considered an abstraction-refinement ap-
proach to solve this problem. However, their approach repre-
sents abstractions using general linear arithmetic formulas
and uses a decision procedure to perform verification and
counterexample search. Their approach was shown to be
successful for a network with only 6 neurons, so it does not
have good scalability properties. More recently, Gehr et al.
[14] presented the AI2 system for abstract interpretation of
neural networks. Unlike our work, AI2 is incomplete and
cannot produce concrete counterexamples. The most closely
related approach from prior work is ReluVal [54], which per-
forms abstract interpretation using symbolic intervals. The
two key differences between ReluVal and our work are that
Charon couples abstract interpretation with optimization-
based counterexample search and learns verification policies
from data. As demonstrated in Section 7, both of these ideas
have a significant impact on our empirical results.

Learning to Verify. The use of data-driven learning in neu-
ral network verification is, so far as we know, new. However,
there are many papers [13, 22, 31, 47, 48] on the use of such
learning in traditional software verification. While most of
these efforts learn proofs from execution data for specific
programs, there are a few efforts that seek to learn optimal in-
stantiations of parameterized abstract domains from a corpus
of training problems [31, 39]. The most relevant work in this
space is by Oh et al. [39], who use Bayesian optimization to
adapt a parameterized abstract domain. The abstract domain
in that work is finite, and the Bayesian optimizer is only used
to adjust the context-sensitivity and flow-sensitivity of the
analysis. In contrast, our analysis of neural networks handles
real-valued data and a possibly infinite space of strategies.

9 Conclusion and Future Work
We have presented a novel technique for verifying robust-
ness properties of neural networks based on synergistically
combining proof search with counterexample search. This
technique makes use of black-box optimization techniques
in order to learn good refinement strategies in a data-driven
way. We implemented our technique and showed that it
significantly outperforms state-of-the-art techniques for ro-
bustness verification. Specifically, our technique is able to
solve 2.6× as many benchmarks as ReluVal and 16.6× as
many as Reluplex. Our technique is able to solve more
benchmarks in general than AI2, and is able to solve them
far faster. Moreover, we provide theoretical guarantees about
the termination and (δ -)completeness of our approach.
In order to improve our tool in the future, we plan to

explore a broader set of abstract domains and different black-
box optimization techniques. Notably, one can view solver-
based techniques as a perfectly precise abstract domain.
While solver-based techniques have so far proven to be
slow on many benchmarks, our method could learn when
it is best to apply solvers and when to choose a less pre-
cise domain. This would allow the tool to combine solvers
and traditional numerical domains in the most efficient way.
Additionally, while Bayesian optimization fits our current
framework well, it may be possible to modify the frame-
work to work with different learning techniques which can
explore higher-dimensional strategy spaces. In particular,
reinforcement learning may be an interesting approach to
explore in future work.

Acknowledgments
We thank our shepherd Michael Pradel as well as our anony-
mous reviewers and members of the UToPiA group for their
helpful feedback. This material is based upon work sup-
ported by a Google Faculty Fellowship and the National
Science Foundation under Grants No. CCF-1162076, No. CCF-
1704883, No. 1646522, and No. 1453386.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] [n. d.]. ELINA: ETH Library for Numerical Analysis. http://elina.ethz.

ch
[2] [n. d.]. Google Cloud Platform (GCP). https://cloud.google.com/.

Accessed: 2018-11-14.
[3] ApolloAuto. 2017. apollo. https://github.com/ApolloAuto/apollo
[4] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-

tiniotis, Aditya V. Nori, and Antonio Criminisi. 2016. Measuring Neural
Net Robustness with Constraints. In Advances in Neural Information

Processing Systems 29: Annual Conference on Neural Information Pro-

cessing Systems 2016, December 5-10, 2016, Barcelona, Spain. 2613–2621.
[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
2016. End to End Learning for Self-Driving Cars. CoRR abs/1604.07316
(2016). http://arxiv.org/abs/1604.07316

[6] Eric Brochu, Vlad M. Cora, and Nando De Freitas. 2010. A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Application
to Active User Modeling and Hierarchical Reinforcement Learning.
abs/1012.2599 (12 2010).

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL

’77). ACM, New York, NY, USA, 238–252. https://doi.org/10.1145/
512950.512973

[8] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. 2017. Output Range Analysis for Deep Neural Networks. CoRR
abs/1709.09130 (2017). arXiv:1709.09130 http://arxiv.org/abs/1709.
09130

[9] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017. Dermatologist-
level classification of skin cancer with deep neural networks. Nature
542 (01 2017), 115–118. http://dx.doi.org/10.1038/nature21056

[10] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. 2017. Ro-
bust Physical-World Attacks on Machine Learning Models. CoRR

abs/1707.08945 (2017). arXiv:1707.08945 http://arxiv.org/abs/1707.
08945

[11] Message P Forum. 1994. MPI: A Message-Passing Interface Standard.
Technical Report. Knoxville, TN, USA.

[12] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. 2012. δ -complete
Decision Procedures for Satisfiability over the Reals. In Proceed-

ings of the 6th International Joint Conference on Automated Reason-

ing (IJCAR’12). Springer-Verlag, Berlin, Heidelberg, 286–300. https:
//doi.org/10.1007/978-3-642-31365-3_23

[13] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider.
2014. ICE: A robust framework for learning invariants. In International

Conference on Computer Aided Verification. Springer, 69–87.
[14] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,

Swarat Chaudhuri, and M. Vechev. 2018. AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation. In 2018

IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA,
USA, 3–18. https://doi.org/10.1109/SP.2018.00058

[15] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The Zono-
tope Abstract Domain Taylor1+. In Proceedings of the 21st In-

ternational Conference on Computer Aided Verification (CAV ’09).
Springer-Verlag, Berlin, Heidelberg, 627–633. https://doi.org/10.1007/
978-3-642-02658-4_47

[16] Yuan Gong and Christian Poellabauer. 2018. An Overview of Vulnera-
bilities of Voice Controlled Systems. arXiv preprint arXiv:1803.09156
(2018).

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and Harnessing Adversarial Examples. In International Con-

ference on Learning Representations.
[18] Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017.

Deepsafe: A data-driven approach for checking adversarial robustness
in neural networks. arXiv preprint arXiv:1710.00486 (2017).

[19] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick McDaniel. 2017. Adversarial examples for malware
detection. In European Symposium on Research in Computer Security.
Springer, 62–79.

[20] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick D. McDaniel. 2016. Adversarial Perturbations
Against Deep Neural Networks for Malware Classification. CoRR

abs/1606.04435 (2016). http://arxiv.org/abs/1606.04435
[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[22] Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a
variable-clustering strategy for octagon from labeled data generated by
a static analysis. In International Static Analysis Symposium. Springer,
237–256.

[23] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2016.
Safety Verification of Deep Neural Networks. CoRR abs/1610.06940
(2016).

[24] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and
Mykel J. Kochenderfer. 2016. Policy compression for aircraft collision
avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics Systems

Conference (DASC). 1–10. https://doi.org/10.1109/DASC.2016.7778091
[25] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel

J.Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Veri-
fying Deep Neural Networks. In Proceedings of the 29th International

Conference On Computer Aided Verification.
[26] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.

Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks. CoRR abs/1702.01135 (2017).

[27] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny

Images. Technical Report.
[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012.

ImageNet Classification with Deep Convolutional Neural Net-
works. In Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.).
Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

[29] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2016. Ad-
versarial Machine Learning at Scale. CoRR abs/1611.01236 (2016).
arXiv:1611.01236 http://arxiv.org/abs/1611.01236

[30] Yann Lecun, LÃľon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. In Proceed-

ings of the IEEE. 2278–2324.
[31] Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning minimal

abstractions. In POPL, Vol. 46. ACM, 31–42.
[32] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability

analysis for feed-forward ReLU neural networks. CoRR abs/1706.07351
(2017). arXiv:1706.07351 http://arxiv.org/abs/1706.07351

[33] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. 2015. A Unified
Gradient Regularization Family for Adversarial Examples. In 2015 IEEE

International Conference on Data Mining, ICDM 2015, Atlantic City, NJ,

USA, November 14-17, 2015. 301–309.
[34] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu. 2018. Towards deep learning models resis-
tant to adversarial attacks.

http://elina.ethz.ch
http://elina.ethz.ch
https://cloud.google.com/
https://github.com/ApolloAuto/apollo
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1709.09130
http://dx.doi.org/10.1038/nature21056
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1707.08945
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
http://arxiv.org/abs/1606.04435
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/DASC.2016.7778091
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri

[35] Ruben Martinez-Cantin. 2014. BayesOpt: A Bayesian Optimization
Library for Nonlinear Optimization, Experimental Design and Bandits.
Journal of Machine Learning Research 15 (2014), 3915–3919. http:
//jmlr.org/papers/v15/martinezcantin14a.html

[36] Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio
Fumera, and Fabio Roli. 2017. Is deep learning safe for robot vision?
adversarial examples against the icub humanoid. In Computer Vision

Workshop (ICCVW), 2017 IEEE International Conference on. IEEE, 751–
759.

[37] Jonas Mockus. 2010. Bayesian Heuristic Approach to Discrete and Global
Optimization: Algorithms, Visualization, Software, and Applications.
Springer-Verlag, Berlin, Heidelberg.

[38] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural
networks are easily fooled: High confidence predictions for unrecog-
nizable images. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. 427–436.
[39] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a

strategy for adapting a program analysis via bayesian optimisation. In
ACM SIGPLAN Notices, Vol. 50. ACM, 572–588.

[40] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016.
Transferability in Machine Learning: from Phenomena to Black-Box
Attacks using Adversarial Samples. CoRR abs/1605.07277 (2016).
arXiv:1605.07277 http://arxiv.org/abs/1605.07277

[41] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deep-
Xplore: Automated Whitebox Testing of Deep Learning Systems. In
Proceedings of the 26th Symposium on Operating Systems Principles

(SOSP ’17). ACM, New York, NY, USA, 1–18. http://doi.acm.org/10.
1145/3132747.3132785

[42] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Towards
Practical Verification of Machine Learning: The Case of Computer
Vision Systems. CoRR abs/1712.01785 (2017). arXiv:1712.01785 http:
//arxiv.org/abs/1712.01785

[43] Luca Pulina and Armando Tacchella. 2010. An Abstraction-Refinement
Approach to Verification of Artificial Neural Networks. In Computer

Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,

UK, July 15-19, 2010. Proceedings. 243–257.
[44] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian

Processes for Machine Learning. The MIT Press.
[45] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. 2015. Ad-

versarial Manipulation of Deep Representations. CoRR abs/1511.05122
(2015).

[46] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker.
2015. Towards Verification of Artificial Neural Networks. In Metho-

den und Beschreibungssprachen zur Modellierung und Verifikation von

Schaltungen und Systemen, MBMV 2015, Chemnitz, Germany, March

3-4, 2015. 30–40.
[47] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and

Aditya V Nori. 2013. Verification as learning geometric concepts. In
International Static Analysis Symposium. Springer, 388–411.

[48] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song.
2018. Learning loop invariants for program verification. In Proceed-

ings of the Thirty-second Conference on Neural Information Processing

Systems.
[49] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast

Polyhedra Abstract Domain. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 46–59. https://doi.org/10.1145/3009837.3009885

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing
properties of neural networks. CoRR abs/1312.6199 (2013).

[52] Pedro Tabacof and Eduardo Valle. 2016. Exploring the space of adver-
sarial images. In 2016 International Joint Conference on Neural Networks,
IJCNN 2016, Vancouver, BC, Canada, July 24-29, 2016. 426–433.

[53] Vincent Tjeng and Russ Tedrake. 2017. Verifying Neural Networks
with Mixed Integer Programming. CoRR abs/1711.07356 (2017).
arXiv:1711.07356 http://arxiv.org/abs/1711.07356

[54] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. 2018. Formal Security Analysis of Neural Networks using Sym-
bolic Intervals. In 27th USENIX Security Symposium (USENIX Security

18). USENIX Association, Baltimore, MD, 1599–1614. https://www.
usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

[55] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). http://arxiv.org/
abs/1609.08144

[56] Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and Xiaolin Li.
2017. Adversarial Examples: Attacks and Defenses for Deep Learning.
CoRR abs/1712.07107 (2017). arXiv:1712.07107 http://arxiv.org/abs/
1712.07107

[57] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014.
Droid-Sec: Deep Learning in Android Malware Detection. In Proceed-

ings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM,
371–372. http://doi.acm.org/10.1145/2619239.2631434

[58] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. 2016. Droiddetector:
android malware characterization and detection using deep learning.
Tsinghua Science and Technology 21, 1 (Feb 2016), 114–123. https:
//doi.org/10.1109/TST.2016.7399288

A Proofs
In this section we present the proofs of the theorems in
Section 5. For convenience, the assumptions and theorem
statements have been copied.

Definition 5.3. For a given networkN , input region I , target
classM , and δ > 0, a δ -counterexample is a point x ∈ I such
that for some j with 1 ≤ j ≤ m and j , M ,N(x)M −N(x)j ≤
δ .

Definition 5.1. For any set X ⊆ Rn , its diameter D(X) is
defined as

D(X) = sup{∥x1 − x2∥2 | x1,x2 ∈ X }

if this value exists. Otherwise the set is said to have infinite

diameter.

Assumption 1. There exists some λ ∈ R with 0 < λ < 1
such that for any network N , input region I , and point x∗ ∈ I ,
if (I1, I2) = Refine(N , I ,x∗), then D(I1) < λD(I) and D(I2) <
λD(I).

Assumption 2. LetN #
be the abstract transformer represent-

ing a network N . Let a be an element of the abstract domain

representing the input region I . We assume there exists some

KN ∈ R such that D(γ (N #(α(I)))) < KND(I).

http://jmlr.org/papers/v15/martinezcantin14a.html
http://jmlr.org/papers/v15/martinezcantin14a.html
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://doi.acm.org/10.1145/3132747.3132785
http://doi.acm.org/10.1145/3132747.3132785
http://arxiv.org/abs/1712.01785
http://arxiv.org/abs/1712.01785
http://arxiv.org/abs/1712.01785
https://doi.org/10.1145/3009837.3009885
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1712.07107
http://doi.acm.org/10.1145/2619239.2631434
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TST.2016.7399288

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Theorem 5.2. Consider the variant of Algorithm 1 where the

predicate at line 3 is replaced with Eq. 4. Then, the verification

algorithm always terminates under Assumptions 1 and 2.

Proof. To improve readibility, we define F (Ik) = γ (N #(α(Ik))).
By Assumption 1 there exists some λ ∈ R with 0 < λ < 1

such that for any input region I ′, splitting I ′ with Refine
yields regions I ′1 and I ′2 with D(I ′1) < λD(I ′) and D(I ′2) <
λD(I ′). Because there is one split for each node in the re-
cursion tree, at a recursion depth of k , the region Ik under
consideration has diameter D(Ik) < λkD(I). By Assump-
tion 2, there exists some KN such that D(F (Ik)) < KND(Ik).
Notice that when

k > logλ
(

δ

2KND(I)

)
we must have D(F (Ik)) < δ/2.

We will now show that when k satisfies the preceding
condition, Algorithm 1 must terminate without recurring.
In this case, suppose x∗ is the point returned by the call
to Minimize and the algorithm does not terminate. Then
F (x∗) > δ and in particular, N(x∗)K − N(x∗)i > δ . Since
Analyze is sound, we must have N(x∗) ∈ F (Ik). Then since
D(F (Ik)) < δ/2, we must have that for any point y ′ ∈ F (Ik),
∥N(x∗) −y

′∥2 < δ/2. In particular, for all i , |(N(x∗))i −y ′i | <
δ/2, so y ′i > (N(x∗))i − δ/2 and y ′i < (N(x∗))i + δ/2. Then,
for all i ,

yK − yi > ((N(x∗))K − δ/2) − (N(x∗))i + δ/2)
= ((N(x∗))K − (N(x∗))i) − δ

> 0

Thus, for each point y ′ ∈ F (Ik), we have y ′K > y ′i . Since
y ′ ranges over the overapproximated output produced by
the abstract interpreter, this exactly satisfies the condition
whichAnalyze is checking, soAnalyzemust return Verified.
Therefore, the maximum recursion depth of Algorithm 1 is
bounded, so it must terminate. □

Theorem 5.4. Consider the variant of Algorithm 1 where the

predicate at line 3 is replaced with Eq. 4. Then, the verification

algorithm is δ -complete, meaning that if the algorithm does not

return “Verified” then the return value is a δ -counterexample

for the property.

Proof. First note that by Theorem 5.2, Algorithm 1 must
terminate. Therefore the algorithm must return some value,
and we can prove this theorem by analyzing the possible
return values. There are five places at which Algorithm 1 can
terminate: lines 4, 8, 12, 15, and 16. We only care about the
case where the algorithm does not return “Verified” so we
can ignore lines 8 and 16. The return at line 4 is only reached
after checking that x∗ is a δ -counterexample, so clearly if
that return statement is used then the algorithm returns a
δ -counterexample. This leaves the return statements at lines
12 and 15. We suppose by induction that the recursive calls

at lines 10 and 13 are δ -complete. Then if r1 is not Verified,
it must be a δ -counterexample. Thus the return statement
at line 12 also returns a δ -counterexample. Similarly, if r2 is
not Verified, then it is a δ -counterexample, so line 15 returns
a δ -counterexample. □

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Networks
	2.2 Robustness
	2.3 Abstract Interpretation for Neural Networks

	3 Algorithm for Checking Robustness
	4 Learning a Verification Policy
	4.1 Policy Representation
	4.2 Learning using Bayesian Optimization

	5 Termination and Delta Completeness
	6 Implementation
	7 Evaluation
	7.1 Comparison with AI2 (RQ1)
	7.2 Comparison with Complete Tools (RQ1)
	7.3 Impact of Counterexample Search (RQ2)
	7.4 Impact of Learning a Verification Policy (RQ3)

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References
	A Proofs

